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Abstract. This paper presents binary phase codes and corret  Introduction

sponding decoding filters which are optimal in the sense that

they produce no sidelobes and they maximise the signal-toPerhaps very few radar systems, if any, use such a wide
noise ratio (SNR henceforth). The search is made by invesselection of radar modulations as incoherent scatter radars
tigating all possible binary phase codes with a given length.do. This is because the properties of the incoherent scatter
After selecting the code, the first step is to find a filter which radar target are strongly range-dependent and also because
produces no sidelobes. This is possible for all codes withof the demand of measuring the full autocorrelation function
no zeros in the frequency domain, and it turns out that mos{ACF henceforth) of the target, instead of mere reflectivity
codes satisfy this requirement. An example of a code whichand Doppler shift. Combination of weak scattering power
cannot be decoded in this way is a code with a single phaseand demand of range resolutions down to a few hundreds of
i.e. along pulse. The second step is to investigate the SNRnetres set further requirements for the performance of the
performance of the codes. Then the optimal code of a givermodulation.

length is the one with the highest SNR at the filter output. All  |f simple pulses are used, improving the range resolution
codes with lengths of 3-25 bits were studied, which meangmplies reduction of the pulse length. This leads to an un-
investigating 33554428 binary phase codes. It turns oukeconomical use of the radar duty cycle and a reduced mean
that all Barker codes except the 11-bit code are optimal inreceived power. Furthermore, short pulses do not allow the
the above sense. It is well known that the performance ofmeasurement of the full length of the signal ACF. The first
matched-filter decoding of Barker codes is better than desolution to this problem was given by multi-pulse codes,
coding without sidelobes. In the case of the 7-bit Barkerwhich improved the range resolution from tens of kilometres
code, it is shown here that the SNR given by sidelobe-freeto a few kilometres (e.g. Farley, 1972; Zamlutti and Farley,
decoding is nearly 30% worse than that of standard decod1975). A further improvement was obtained by phase modu-
ing, but for the 13-bit code sidelobe-free decoding is only lation of the radar pulses. Barker codes (Barker, 1953) were
about 5% worse. The deterioration of SNR should be evalufirst applied to single short pulses to obtain high-resolution
ated against the benefits gained in disposing of the sidelobegower profiles (loannidis and Farley, 1972), and later to mul-
which, even for the 13-bit code, contribute by 7.1% to thetipulses to obtain all lags of the ACF with the same high
total signal power from a homogeneous target. Thus, regiongesolution (Turunen et al., 1985; Huuskonen et al., 1986).
of weak scattering can be contaminated by the sidelobes fronm addition, other codes like random codes (Sulzer, 1986)
neighbouring layers of strong scattering, causing broadeningnd alternating codes (Lehtinen anédddistom 1987; Sulzer

of thin spatial structures and giving a lower spatial resolu-1989, 1993) are capable of improving the range resolution.
tion than implied by the bit length. A practical example is A drawback of alternating codes is that the ACF of the target
shown where sidelobes mask a weak signal when the starshould remain stationary during the transmission cycle.

dard matched filter is used in the analysis. An improvement Barker codes are used both in multipulses and in alternat-
iS aChieVed When Sidelobe'free f||ter|ng iS Carried out. |ng Codes for improving the range resolution_ The ana'ysis
of Barker-coded measurements involves decoding, which is
normally made by means of a matched filter. The sidelobes
produced by this sort of decoding are distractive in some oc-
casions. Key et al. (1959) showed that weighting networks
Correspondence td3. Damtie to be placed after the standard matched filter can be de-
(dbaylie@koivu.oulu.fi) signed which reduce the sidelobes to an arbitrary low level.
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) | receiver filter pairs that maximise the SNR at the filter out-
OT T I put. He calculated optimal waveforms for different receiver
a4l i filters and radar targets. In the present work, however, we

. . L 8 . = = maximise the SNR subject to the constraint that the decod-
‘ ‘ ing is sidelobe-free.
1 ,
ol [ [ [
at i . 2 The principle of sidelobe-free decoding
1 3 5 7 9 11 13
; ; ; ; ; Phase modulation is a principle which divides the radar pulse
17 I I I I I I I I I I I 7 into a set of subpulses of equal duration and the phase of
° l l l each subpulse is fixed. When two phase values with a phase
T ‘ ‘ ‘ ‘ ‘ ] difference of 180 is used, the modulation is a binary code.
1 ® ime lin units of sampling mierval] 13 Barker codes and alternating codes are examples of binary
phase codes, which are widely used by incoherent scatter
Fig. 1. Top: Simple pulse with 3-unit duratiop(n). Middle: Im-  radars. Decoding of Barker coded measurements are car-
pulse response of a coding filtég,(1). Bottom: Convolution result,  fied out in amplitude domain (loannidis and Farley, 1972),
e(n). whereas data collected by using alternating coded pulses

are decoded in the power domain (Lehtinen ariygstom

1987). Binary codes can be described mathematically in
Sulzer (1989) found out that, for each modulation pattern, itterms of a coding filter in a manner analogous to that pre-
is possible to find a decoding filter which makes pulse com-sented by Sulzer (1989).
pression without sidelobes, provided the modulation function Since our data analysis is based on discrete samples, the
has no zeros in the frequency domain. The impulse responseeory is presented in terms of discrete signals. This leads to
of this filter has an infinite length. Lehtinen et al. (2002) results which can be used in programming. We investigate
have applied such a decoding in the analysis of experimena code consisting aof g pulses (amp-bit code). We also
tal data. Sulzer also pointed out that a maximal SNR is notassume that the pulse length is a multiple of the sampling
achieved by a sidelobe-free filter. The deterioration of SNRintervalT, i.e.T,=n,T, wheren; is an integer indicating the
can be small for some codes, but very large in worst casesaumber of samples per bit. This means that the possibility of
This means that the best codes must be chosen if sidelob@versampling is taken into account. By choosifigas the
free filtering is used. Other efforts of reducing the sidelobestime unit, an elementary pulse can be written as
have also been made. Mudukutore et al. (1998) showed that
the range-time sidelobes can be suppressed by means of a .
suitable filter down to levels which are acceptable for oper-"") = Z 8( —n), n=-00,...
ational and research applications. This work was based on j=0
a simulation procedure which was used to evaluate the pefwheres is the discrete time-impulse (unit sample; not to be
formance of the filter. The simulation describes the signalconfused with the delta function)
returns from distributed weather targets by using pulse com-
pression waveform coding. Methods of optimising the peak- { 1 whenn =0

ng—1

, 00, 1)

to-sidelobe ratio have also been presented by Blinchikoff ands(n) ~ 10 whenn # 0. 2)
Zverev (1987) and Rihaczek and Golden (1971).

Another method for eliminating the sidelobes is provided
by complementary codes (see e.g., Schmidt et al., 1979*8

Accordingly, the impulse response of a coding filter of an
-bit binary code can be written as

Woodman, 1980). These codes are chosen to make the side- np—1

lobes of the set cancel out_when added together. A drawback . (n) = Z ajd(n — jng), n=—o0,..., 00, 3)
of complementary codes is that the correlation time of the =0

target must be larger than the time between the two codes in

the set. wherea;= 4+ 1 whenj=0,1,...,np — 1. The sequence of

In this paper we present optimal binary phase codes witf'imbersa; defines the binary code. We note tatn) is
lengths of 325 bits. W first find the transfer functions andZ€"0 Whem: <0 orn>n;(n5—1). An example ofp(n) and
impulse responses of the sidelobe-free decoding filters for alftc ) With n,=3 andn =5 is plotted in the top and middle
binary phase codes for which such filters exist. Next, we in-Panel of Fig. 1.~ .
vestigate the SNR at the filter output; optimal codes are those The code is obtained by means of a convolution
which maximise the SNR. The results are based on investi%(n) — ho(n) % p(n)
gating millions of different phase codes. ‘OO

A somewhat similar work has been made by Bell (1993), — Z p(Nhe(n—j), n = —oo, ..., 00, (4)

who used information theory to design radar waveform and =0
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Fig. 2. The 10-based logarithm of the absolute values of the coeffi-Fig. 3. The 13-bit Barker code sampled at a rate of 3 samples per

cients of the sidelobe-free compression filter that corresponds to théit (top). Left: The impulse response of the corresponding matched

13-bit Barker code sampled at a rate of 3 samples per bit. filter (middle) and the weight function (bottom). Right: The im-
pulse response of the sidelobe-free compression filter (middle) and
the weight function (bottom).

wherex denotes the convolution. We note thdih) is zero

whenn<0 orn>nzng—1. The bottom panel of Fig. 1 shows

the convolution of the discrete elementary pulse and the imshape. This shape defines the range resolution. Mathemati-

pulse response of the coding filter in the upper two panels. cally, this means that

For designing a sidelobe-free decoding filter we first define

the impulse response A(n) * €(n) = w(n). ©)
e . The result of the convolutionw(n) is a weight function,
ha(n) = Z bjd(n — jns), n= —o0,..., 00, (5)  which determines the range resolution and the range ambigu-

j=—o0 ity functions (for range ambiguity functions, see e.g. Lehti-
where the sequence of real numbieyswill be chosen to de-  N€n and Huuskonen_, 1996). In th(_a case of standard decoding
codeh, in Eq. (3). In addition, we need an impulse response®f Barker codes, for instance, the impulse response of the de-
q(n) for filtering the elementary pulse(n). Thus, the com-  codingfilter is a mirror image of the decoding filter itself and
plete structure of the sidelobe-free decoding filter for pro-w (1) is afunction with a triangular centre peak and a number

Fourier transforms of convolutions are products of the
A(n) = ha(n) x q(n) Fourier transforms of the convoluted sequences and thus the
o0 ) ) Fourier transform of the weight functian(n) is given by
= > q(Dha(n—j), n=—o0,..., o0. (6)
Jj=—00 Fplwm)} = Fplha(n)}Fplgm)} Fple(n)}
Here we use a matched filter fp(n), i.e.q(n)=p(—n). For = Fplha(m)}Fplhc(n)}
further discussions on the performance of different shapes of x Fplq(n)}Fp{pn)}. (10)

q(n), see Huuskonen et al. (1996). '
The discrete-time Fourier transform of the code may belf we chooséh, (n) to makeFpihs(n)}Fpihe(n)} =1, i.e.
given by

1
%0 ha(n) = Fp* {—} : (11)
—inw F: hC n)
£(@) = Fplem= Y eme™™, (7) pihe()
n=—00 the inverse Fourier transform of Eqg. (10) gives
and the inverse Fourier transform is expressed b
P y w(n) = q(n) * p(n). (12)
1 2r
€(n) = ]—‘51 {Fplem)}} = o e"s(w)dw. (8) Thus, the impulse response defined by Eq. (11) makes a side-
®=0 lobe-free decoding filter producing exactly the same weight
Fourier transforms in other cases are defined similarly. function to what would result from using no coding at all, just

The decoding of a binary phase coded signal can be carriethe elementary pulsg(n) and a filterg (n) matched to it. In
out by means of a decoding filter such that the convolutionparticular, no sidelobes are produced. It is worth mentioning
of the decoding filtef; (n), the filter matched to the elemen- that we calculatev(n) presented later in this paper by using
tary pulseg (n) and the code(n) is a function with a desired  Eq. (10), not from Eq. (9).
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The sidelobe-free decoding filter in Eq. (11) can only be Finally, the impulse response of the sidelobe-free decoding
found if the Fourier transforndFp{h.(n)} has no zeros for filter is obtained by means of the inverse Fourier transform,
we[0, 2]. Also, the filter defined by Eq. (11) has infinitely which is
many coefficients. One may be concerned about these facts 1 pen
and they may have prevented sidelobe-free decoding filters.(n) = Fp YA (w)} = — Q@)
from becoming more popular. However, these problems are 21 Ju=0 He(®)

not serious in practice because of the following two reasonsone should notice that sidelobe-free decoding works for all
1) Itis very improbable that the Fourier transform of an ar- kinds of codes which do not have zeros in frequency domain,

bitrary finite sequence has any zeros. This Fourier transfornincluding the Barker codes.

is a sum of a few harmonic terms definedw[0, 27 |, mak- The impulse response of the standard matched filter that

ing it a very smooth and infinitely many times differentiable corresponds to the filter described by Eq. (17) is a mirror
function. The existence of zeroes can thus easily and reliablymage of the code, i.e.

be checked by simple numerical approximations.

2) While the length of the sidelobe-free decoding filter is u(n) = €(—=n) = he(—n) * p(n), n=—o0o,..., 0. (18)
infinite, it turns out that the coefficients go to zero faster than _ . L
the reciprocal of any polynomial of. This is demonstrated The corresponding weight function is
in Fig. 2 by taking 'Fhe base 10 logarithm _of the absolutewm(n) — wu(n) * €(n) = he(—n) % p(n) * he(n) % p(n). (19)
value of the normalised coefficients of a sidelobe-free de-
coding filter, displayed on the right middle panel of Fig. 3, Figure 3 demonstrates the sidelobe-free filtering in the
and it can also be justified mathematically (e.g. Courant andtase of the 13-bit Barker code. The top panel shows the code
Hilbert, 1968). Thus, it is possible to truncate the infinite fil- itself, sampled at a rate of 3 samples per bit. The middle
ter to cause no more numerical errors than that which cometeft panel shows the impulse response of the corresponding
from other sources, like sampling accuracies or fidelity of thematched filter, and the bottom left panel the weight function
transmission waveforms. We also want to stress here that thealculated from Eq. (19). The weight function has a middle
effect of truncation is negligible on the SNR penalties studiedpeak with a height of 813=39 units and six side lobes on
later in this paper. both sides with heights of three units. Indexing of the sam-

Equations (9) and (12) give a possibility to investigate ples is changed to move the main peak to zero.
whether filters can be found which give(n) with a desired The two right-hand panels of Fig. 3 demonstrate the de-
shape and width. There is a freedom in defining the shape ofoding of the 13-bit Barker code without sidelobes. The
the weight function (i.e. the compressed pulse) by choosingniddle right panel shows the impulse response calculated ac-
different shapes of filters fog (r) in Eq. (12). Limitations cording to Eq. (17). Its main structure resembles the impulse
are imposed by the coding filter rather than by the decodingesponse of the matched filter, but the values are not exactly
filter, since the Fourier transform of the coding filter is not plus or minus unity. On both sides of the main structure,
allowed to have zeros in the frequency domain. For examplesmaller values are encountered, which rapidly decrease to-
if we useq (n)=ngp(—n) in Eq. (12),w(n) becomes a trian- wards zero, as already seen in Fig. 2. When the number of
gle with a height equal to the number of bits in the code suchsamples of; and/,. used in calculating? and H, is 1024,

e"dw. a7)

that the absolute normalised value of the truncated impulse re-
ngn when0<n <n sponse at its ends is of the order of 38, If 2048 samples
=n=ns . —ié _ 17 i i
w(n) = 4 npny(2 —n/ng) whenn, <n < 2n, (13)  are used, this value drops down to 107/, which is
0 elsewhere, the computer numerical accuracy.

: i L ) o The corresponding weight function is shown in the bottom
we obtain decoding which is otherwise similar to Sta”dardright-hand panel of Fig. 3. It can be obtained numerically

matched filtering of a Barker code but produces no sidelobesgjihear by using the calculated impulse response in the convo-

By combining Egs. (6), (10), (12) in a proper manner, the |tion (9), or from samples df,, ¢ ande by means of the in-
mathematical expression for the transfer function of the comygrse Fourier transform of Eq. (10). In both cases the weight
plete sidelobe-free decoding filter that givee:) with a de-  ¢nction indeed consists of a single triangular peak with a
sired shape can be easily obtained and itis given by height of 39 units and a total width of 6 units. A closer look

O(w) reveals that the side lobes behave differently, however. In the
H.(») case of Eq. (9), two nonzero sidelobes appear which decrease
with height and drift away from the main peak with increas-
~ ing number of samples. This is an end effect of the truncated
O(w) = Z g(nye=ine, (15) impulse response. When the number of samplesande is
128, the height of the sidelobes is 0.87, while that of the main
peak is 39. When 1024 samples are used, the highest values
-~ of the sidelobes are of the order of 70 No such sidelobes
H.(0) = Z he(n)e—in®. (16) appear when Eg. (10) is applied. When the number of points
in the Fourier transforms is 128 or higher, the valuesvof

Alw) = Fpi{r(n)} =

: (14)

where

n=—oo

and

n=—oo
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computer numerical accuracy. This demonstrates the benefit° ]

of Eq. (10) in numerical calculations. 1 ‘ ‘ ‘ ‘ ‘ ‘ f

Figure 4 portrays similar calculations for an arbitrary 15- ° Timg [in uras of sampling inarval] - 0

bit code, which is not a Barker code. The left-hand panels 2
demonstrate matched filtering done by means of a mirror im- 5
age of the code. The result is that the weight function con- , -1
2

sists of a centre peak, as well as a set of six small negative o s 10 15 20 25 30 35 40 45 0 50 100 150 200 250

outside of the main peak are always down to the level of the 1~\ ‘ ‘ /——\ ‘
5 10 _15 20

sidelobes and one high positive sidelobe on both sides of it.f;;1 5
The impulse response in the middle right-hand panel has ans 36
infinite length, but it decays rapidly on both sides of the main 2] a
structure much in the same way as in the case of the Barkerg ' 2
code. The weight function in the bottom right-hand panel -o -9

Obtained from Eq (10) indicates that the Side |ObeS are Com'-soTime Eiznsunits ofcs)amplingsimervalt]_,O -SOTime Eiznsunits ofgamplinssinterval?o

pletely eliminated, even in this case.
Fig. 4. A 15-bit phase code sampled at a rate of 3 samples per bit
(top). Left: The impulse response of the corresponding matched
3 SNR performance of a decoding filter filter (middle) and their ambiguity function (bottom). Right: The

] ) ) ) impulse response of the sidelobe-free compression filter (middle)
There is a decrease in SNR when one applies a sidelobemd the weight function (bottom).

free compression filter instead of the standard matched fil-

ter. This drawback has been pointed out earlier, for exam-

ple by Sulzer (1989). Blinchikoff and Zverev (1987) have where; is the peak value of the weight functian (n) of
also discussed in detail the degradation of SNR associatethe sidelobe-free decoding filter.

with filters which maximise the peak-to-sidelobe ratio. In  For comparison of the noise performance of different side-
this section the SNR performance of sidelobe-free decodindobe-free filters we use Eq. (23) to define a parameter

of different Barker codes is investigated by comparing it with

that of the corresponding matched filter. P Sy, SN R, _ @3 _ 1 (24)
If the power spectral density of white noise entering a filter P i": ()2 i": b2-
with a transfer functionH (v) is S(v)=S,, the total output oo e "

noise power is

This parameter is actually a scaled signal-to-noise ratio with
o

- ) ) a scaling factor equal t&/S,. It is useful for comparison,
P, = Sn/|H(V)] dv =, /h ()dt, (20)  since it depends only on the properties of the filter itself, not
—o0 —0 on the noise level or such things as the reflectivity of the tar-

get, the transmitted power and the antenna gain.
The noise performance of different sidelobe-free filters
can be compared with that of the matched filter by calcu-
> lating the ratio of the two signal-to-noise ratios. Since the
_ 2
Pn = Sn Z h(n)*. (21) sidelobe-free decoding filter is designed to give=w,, (this
is illustrated in Figs. 3 and 4), this parameter is

wherev is frequency and(z) is the impulse response of the
filter. In the case of a digital filter, this can be written as

n=—oo

The power of the signal received from a point target is
proportional to the maximum of the zero-lag range ambigu- i‘): 1u(n)2
ity function, i.e. to the square of the maximum value of the SNR;, ="
weight functionw(n). Hence, the SNR given by the matched R= SNR., = :
filter is X M2

n=—0oo

(25)

2
SNR,, = _ P (22) The values ofu(n) andi(n) needed in Eq. (25) are obtained

S, io: w(n)? from Eq. (18) and Eq. (17), respectively. A sufficient ac-
n=—00 curacy for comparison purposes is obtained by truncating
wherei,, is the peak value of the weight functiam, (n) of at the points where its absolute values are below’1@ee

the matched filter ané is a scaling coefficient defining the Fig. 2). . )
received power. In a similar manner, the SNR value at the 1able 1 gives the values df for Barker codes of different

output of the sidelobe-free decoding filter is lengths. They illustrate the fact that sidelobe-free decoding

of Barker codes degrades the SNR by about 530% rela-

23) tive to standar_d decoding. However, the degradation is small-

s % A(n)z’ est for the 5-bit and 13-bit Barker codes which are often used
n in incoherent scatter radar measurements. In the case of the

n=—oo

P ~2
SNR, = Oy
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2

Table 1. SNR of the sidelobe-free decoding filters relative to that of NB=5 +++-+ 2 0°=58
matched filters for Barker codes of different lengths. (1) (l) - w*
-1
. -1
Length/bits R 0 10 20 30 40 50 100 150 200 250 300
3 0.745 NB=5 ++-+- 5
4 0.679 1 % 52=94
5 0.866 10 1o
7 0.705 0 10 20 30 40 50 710 150 200 250 300
11 0.711
13 0.952 1 NB=5 +-++- 2 =116
1 ‘ Ba
0 0
1 -1

0 10 20 30 40 50 100 150 200 250 300

13-hit code, the loss is only about 5%. Hence, in this respect

. . . . 5 4 2-6689
the 13-bit code is the optimal Barker code, as already pointed ; B=5 4+ 2 ’
out by Sulzer (1989). 0 _f]'[l1ll'l|'[|'|"lll‘l|'|lllrl|'
-1
0 10 20 30 40 50 0 100 200 300 400
Time [in units of sampling interval] Time [in units of sampling interval]

4 Optimal binary phase codes and corresponding side-

lobe-free decoding filters Fig. 5. The left column shows, as an example, four different 5-bit
L . . ) binary phase codes and the right column portrays the impulse re-
The problem of designing coding waveforms with spiky au- gponses of the corresponding sidelobe-free compression filters. In
tocorrelation functions has long been an important problemye |ast panel in the right column we see one of the rare cases where
in the field of radars and sonars. It is usually viewed as aH,(w) has a zero and its discrete numerical approximation has a
problem of optimisation (e.g. Bernasconi, 1987; De Grootvalue very close to zero. This results in very higR values in
et al., 1992). In incoherent scatter radars, the coding wavethe numerical calculations and filter coefficients which decay very
forms usually employ binary phase codes and extensive worlglowly.
on these codes has been done in order to obtain measure-
ments with a very high range resolution (e.g. Gray and Far-
ley, 1973; Lehtinen and &jgstdom, 1987 and Turunen et al., different codes are shown as examples. The right-hand pan-
2002). Here we search for pairs of binary phase codes andls portray the corresponding impulse responses. The values
corresponding receiver filters that maximise the SNR at thepf 2, calculated according to Eq. (26), are written on each
output of the filter without producing unwanted sidelobes. panel. The results indicate that+ + — + has the best per-
Our search is restricted to binary phase codes with th&ormance ¢2 is also greater for all 5-bit codes not shown in
number of bits within the range from 3 to 25. The number Fig. 5). This is the bit pattern of the 5-bit Barker code. Hence
of possible bit patterns for ang-bit code is 25. However,  the Barker code has the best performance of all 5-bit codes,
changing the signs of all bits gives a code with the same bewhen sidelobe-free decoding is used. The code in the bottom
haviour. This reduces the number of codes to be investigate@lanel is an example of a case whlp(w) has a value very
to 2'5=1. Actually, a mirror image of a code and the mir- close to zero. Then the decrease in the impulse response is
ror image with changed signs are also essentially the sameery slow.
Therefore, the true number of different codes to be investi-
gated is even smaller but, from practical point of view, it is
more convenient to go through all2-1 codes. Thus, in or-

A similar study was made for all other codes and it turned
out that sidelobe-free filters could be found for most of the
X ) ¢ ; bit patterns for all code lengths studied. The results of the
der to find the optimal codes with lengths extending from 3 search are displayed in Figs. 6-10. It turns out that the opti-
to 25 bits, we have studied 33 554 428 different bit patterns. mal 3-, 4-, 5-, 7- and 13-bit binary codes are Barker codes.

The choice of an optimal code is based on the noise pertha 11-pit optimal binary phase code-£0.80 and-=8.85)

formance of the corresponding sidelobe-free decoding filter;s ,\vever different from the 11-bit Barker codR=£0.71
The optimal code gives the smallest noise power at the ﬁlterar’ldr:7.82),.

output. Thus, we first calculate the side-lobe free impulse re-
sponse.(n) of each code and then, following Eq. (21), com-
pute the normalised output noise power

The values of parametersandr for the codes are shown
in Fig. 11 as a function of the code length. The top panel indi-
cates that sidelobe-free decoding can reduce the SNR even by
P, 0 2 40% in comparison with matched filtering, but in many cases
o= S, Z A(m)*. (26)  the reduction is less than 20%. The 13-bit code, which is also
=T a Barker code, is the best one in this respect. The difference
The optimal code is found by selecting the minimum output of the performances of the 11-bit optimal code and Barker
noise power among all codes of the same length. code is also seen in the figure. It is interesting to notice that,
Choosing the optimal 5-bit code is demonstrated in Fig. 5.at small code lengthst contains a violent oscillation which
In the left-hand panels, only four out of the investigated 16is damped with increasing code length. The bottom panel
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2 = - 27 nB=13 +4++totttt _ _
21 mB=3 ++ 5| R=0.75 = 224 Ln 2 R=0.95 r=12.38
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5 Practical demonstration of sidelobe-free pulse com-
pression

indicates a general increasing trendrinalthough in some In this section we demonstrate the advantage of a sidelobe-
cases a longer code has a worse performance. One shoultee decoding technique over traditional matched filter us-

notice thatR andr refer to the main peak of the weight func- ing Barker-coded data from the EISCAT Svalbard radar (for

tion w(n). Since most of these codes are not Barker codesdetailed descriptions of the radar system, see Wannberg et
a matched filter may produce large sidelobes (e.g. 3 timeal., 1997). The experiment was conducted on 16 November
larger in the case of the 15-bit binary code displayed in thel999. The data was collected by means of hardware con-
top panel of Fig. 4), which may greatly limit the applicability nected to the standard radar receiver. This hardware stores
of matched filtering in these cases. the complex baseband data samples rather than the ACF



1630 M. S. Lehtinen et al.: Optimal binary phase codes

NB=23 +++++++--tt-t--t-t-t- R=0.82 r=18.95

P okrnN

0 50 100 150 200 250 0 100 200 300 400 500 600 700

L L L L L L L L
5 7 9 11 13 15 17 19 21 23 25
Number of bits in the code

O tn ¢
)]

NB=24 +-++-+--tt++-m-tommtomm R=0.83 r=20.03

P oekrnN
N
[*al

0 50 100 150 200 250 O 100 200 300 400 500 600 700 20

=
13

NB=25 +--+--++-+-t--memet et R=0.85 r=21.33

Values of r

P oekrnN
=
SRS

L L L L L L L L
0 50 100 150 200 250 0 100 200 300 400 500 600 700 3 5 7 9 11 13 15 17 19 21 23 25
Time [in units of sampling interval] Time [in units of sampling interval] Number of bits in the code

o

Fig. 10. Left column: Bit patterns of optimal 23-bit, 24-bit and Fig. 11. The performance of different optimal binary codes in terms
25-bit codes. Right column: The impulse responses of the correof R (top panel) and (bottom panel). In both figures the circle
sponding sidelobe-free decoding filters. indicates the performance of Barker codes.

estimates, which gives a great freedom in data analysis. Théles are shown in the right-hand panel. Range correction of
data collection system and the applied radar modulation aréhe received power has not been carried out here.
described in detail by Lehtinen et al. (2002). This profile was chosen because it contains an echo from a
The experiment applies two-phase codes transmitted apoint target, which is either a satellite, a space debris object
different frequencies. Only one of them, consisting of a ba-or a meteor. Due to the basic 5-bit modulation, the echo is
sic phase pattern of 5 bits, is used in this paper. The transvisible after decoding as five peaks in the power profile (the
mission pattern is shown in Fig. 12. Each bit in the basicmaximum power at the peaks is over 800 units). When the
modulation is submodulated by a 5-bit Barker code with asubmodulation is decoded by means of a sidelobe-free filter,
6-us bit length. The sampling interval is;2s. This experi- the power level between the peaks agrees with the power pro-
ment allows us to compare the sidelobe-free decoding of thdile outside the peaks. This confirms the removal of the side-
submodulation with standard Barker decoding. lobes. The results are different in the case of standard decod-
The baseband complex signal samples containing daténg. Between the two uppermost peaks the power level is ap-
from both frequency channels are stored on hard disk. Theroximately the same as the background profile, but between
off-line data processing consists of channel separation anthe four lowermost peaks it clearly exceeds the background
clutter removal, and it produces a separate data stream fgpower. This effect is due to the range ambiguity function
each channel. Detailed descriptions of the signal processingf the basic modulation. Between the four lowest peaks the
methods are presented by Lehtinen et al. (2002) and Damtigidelobes of the individual peaks are located in such a man-
etal. (2002). The sidelobe-free decoding is carried out usinger that their sum is constant. Due to the pulse with opposite

the equation phase in the basic modulation, the sidelobes cancel between
the two uppermost peaks, which gives no enhancement.
i = Fp-l {fD{y}} _ Fpt { HC}—D{y}} ’ @7) The high values of standard deviation at the five power
A Q0 peaks result from the fact that the point target is visible within

wherey and y, are the measured and decoded sample pro-the radar beam (or within its sidelobes) for a shorter period

files, A is the transfer function of the decoding filter, agd than the integration time of 0.8 s. Elsewhere in the profile the

andH, are the Fourier transforms gfandh,. The length of standard deviation is roughly constant and it is not greatly af-

the measured data profile is 2000. Notice that the impulse re]ieCtGd by _the lower performance of the sidelobe-free filtering
of the 5-bit Barker code.

sponse of the decoding filter is not calculated when Eq. (27)
is applied in decoding but, instea@, and H, are calculated
according to Egs. (15) and (16), respectively. 6 Conclusion

The left-hand panel of Fig. 13 portrays a power profile af-
ter decoding the 5-bit Barker submodulation. Two decodingln this paper we have presented the method of finding binary
methods have been used, the standard matched filter (blughase codes which produce a maximal SNR when decoded
and the sidelobe-free filter (red). The integration time of theby means of a sidelobe-free filter. When applied to all pos-
profile is 0.8 s. The corresponding standard deviation prosible phase patterns with lengths 3—25 bits, 23 optimal codes
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Fig. 12. The modulation pattern applied in the experiment. The )
5-bit basic modulation is shown in the top and the Barker-codedF9- 13. Left: An example of power profiles calculated by employ-

structure of a positive bit and the subsequent negative bit is show"d the traditional matched filter (blue) and sidelobe-free decoding
at the bottom. filter (red). Right: The corresponding standard deviation profiles

obtained by using the traditional matched filter (blue) and sidelobe-

were found. The first step in the search was to check that th<]:,-Iree compression filter (red).

Fourier transform of a pattern is always nonzero. After this,
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