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Abstract. A spectral analysis of the time series correspond-
ing to the main monthly precipitation regimes of the Iberian
Peninsula was performed using two methods, the Multi-
Taper Method and Monte Carlo Singular Spectrum Analy-
sis. The Multi-Taper Method gave a preliminary view of the
presence of signals in some of the time series. Monte Carlo
Singular Spectrum Analysis discriminated between potential
oscillations and noise.

From the results of the two methods it is concluded that
there exist three significant quasi-oscillations at the 95%
level of confidence: a 5.0 year quasi-oscillation and a long-
term trend in the Atlantic pattern of March, a 3.2 year quasi-
oscillation in the Cantabrian pattern of January, and a 4.0
year quasi-oscillation in the Catalonian pattern of Febru-
ary. These quasi-oscillations might be related to climatic
variations with similar periodicities over the North Atlantic
Ocean.

The possible simultaneity of high values of precipitation
generated by the significant quasi-oscillations and high sea–
level pressures was studied by means of composite maps. It
was found that high values of precipitation generated by the
oscillations of the Atlantic patterns of January and March ex-
ist simultaneously with a specific high pressure structure over
the North Atlantic Ocean, that allow cyclonic perturbations
to cross the Iberian Peninsula. During the non-wet years, this
high pressure structure moves northwards, keeping the track
of the low pressure centers to the north, far from the Iberian
Peninsula.

On the other hand, high values of precipitation generated
by the oscillation of the Cantabrian pattern of January exist
simultaneously with a high pressure structure over the Gali-
cia region and the Cantabrian Sea, that allow a northerly flow
over the region.

Also, a positive trend in the NAO index for March has been
found, starting in the sixties, which is not evident for other
winter months. This trend agrees with the decreasing trend
found in the March Atlantic pattern.
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1 Introduction

Precipitation is a very irregular variable. It presents a wide
variability both spatially and temporally at very different
scales (interannual and intraannual). This is particularly true
for the Iberian Peninsula, whose geographical location (be-
tween two sources of humidity: the Atlantic Ocean and the
Mediterranean Sea) and the existence of various mountain
chains add difficulties to the construction of a precipitation
model. However, the great influence of precipitation on life
in the Iberian Peninsula (agriculture, water supply, the tourist
trade, etc.) makes it of great importance to understand the
causes of this variability. In this sense, the detection of oscil-
lations in precipitation time series is a very interesting topic,
not only for predictive purposes, but also because it yields
important information for the understanding of climate, since
the oscillations can be seen as responses of the climate sys-
tem to external forcing or feedback processes.

Precipitation over the Iberian Peninsula shows a strong
seasonal character which affects its nature (frontal or convec-
tive). This is due to the fact that some factors become impor-
tant only during some months of the year. Thus, while pre-
cipitation during winter can be mostly explained by synoptic-
scale perturbations crossing the Iberian Peninsula, local fac-
tors generating convective storms must be taken into account
for the understanding of Spring, Summer and Autumn pre-
cipitation. This situation suggests considering separately
each calendar month in order to improve the characteriza-
tion of the precipitation regimes in the Iberian Peninsula.
This was done by Serrano et al. (1999a), who showed that
some monthly precipitation regimes exist only during certain
months of the year, and vanish for others.

In the present paper a spectral analysis of those signifi-
cant monthly precipitation regimes is performed. The aim is
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Table 1. Rank and percentage of total variance explained (in parentheses) by PCs that are associated with common patterns. Blank spaces
correspond to months where the pattern was not detected

Month ATL INT SUR POR CAT LEV CAN

JAN 1(33.5) 2(18.1) 3(11.9) 5(8.0) 4(8.7)
FEB 1(42.8) 2(10.0) 5(6.9) 3(9.2) 4(8.0)
MAR 1(36.5) 4(8.4) 2(11.9) 3(9.6) 5(8.3)
APR 2(16.3) 1(17.0) 5(9.8) 4(11.5) 3(11.8) 6(8.7)
MAY 2(12.4) 1(19.3) 6(5.9) 4(10.4) 3(10.8) 5(9.8)
JUN 1(17.3) 5(7.2) 2(11.7) 3(11.4)
JUL 4(9.5) 5(8.7)
AUG 7(6.8) 3(7.9)
SEP 2(12.6) 5(8.7) 7(5.7) 4(11.7) 3(12.4) 6(7.7)
OCT 3(10.7) 1(21.6) 6(8.3) 7(8.1) 4(10.0) 5(9.7)
NOV 1(28.3) 2(11.2) 3(10.4) 5(8.4) 4(8.9)
DEC 1(26.2) 2(20.9) 3(12.2) 5(7.9) 4(9.1)

the detection of significant quasi-oscillations in the monthly
precipitation series over the Iberian Peninsula by analyzing
separately each calendar month. This study allows for the
identification of time characteristics specific to some months
that might be masked in annual or seasonal analyses.

There have been studies aimed at detecting oscillations
in the main precipitation regimes in the Iberian Peninsula.
However, they deal with annual series (Rodrı́guez-Puebla et
al., 1998) or with continuous quarterly series (Garcı́a et al.,
2002). Since some spatial regimes of precipitation are only
reliable for certain calendar months, an analysis for each
month, as is performed in the present paper, seems to be more
suitable.

The time analysis was carried out using two modern tech-
niques of time series spectral analysis: MTM (the Multi-
Taper Method) and SSA (Singular Spectrum Analysis). The
great number of data series to be analyzed suggested first
making a preliminary exploration of the spectra. For this pur-
pose, we used the MTM, which generates a first selection of
quasi-cycles that later will be studied in detail using an SSA,
in particular the Monte Carlo SSA test (Allen and Smith,
1996). Finally, we will describe the results of a search for
a relationship between the resulting statistically significant
quasi-cycles and some climatic variable, in order to explain
the origin of the oscillations.

We will begin by describing briefly the data and the spec-
tral analysis methods employed in this work (MTM and
SSA).

2 Data

Precipitation is a very complicated variable to deal with. In
the case of the Iberian Peninsula, for instance, its descrip-
tion involves a large range of temporal and spatial scales.
The highly seasonal nature of its precipitation field suggests
studying each calendar month separately, since no precipita-
tion seasons could be defined a priori for all the stations. In

order to study the evolution of the precipitation field and its
possible teleconnections, the main modes of variation of pre-
cipitation over the Iberian Peninsula identified and character-
ized by Serrano et al. (1999a) were used in this work. These
modes of variation are preferred over the individual station
records, since they better represent the general main precipi-
tation regimes and are less noisy than the local records.

The main modes of variation of precipitation, which are
the basis of this study, were obtained by applying Princi-
pal Component Analysis (PCA) to forty precipitation station
records covering the Iberian Peninsula from 1919 to 1992
(Serrano et al., 1999a). Thirty-five precipitation series were
provided by the Instituto Nacional de Meteorologia of Spain,
four by the Instituto Nacional de Meteorologia e Geofisica
of Portugal and one by the Real Instituto y Observatorio de
la Armada Espãnola of Spain. The modes of variation were
obtained for each calendar month separately. The PCs were
rotated using the Varimax method. Direct Oblimin and Pro-
max were also tested. Since there were no significant differ-
ences between the rotated PCs, the simpler and widely used
Varimax method was preferred.

Under the hypothesis that the PCs are linked to general
circulation conditions that vary slowly throughout the year,
main patterns must remain relevant for various months. Ac-
cordingly, only those spatial patterns appearing during at
least two contiguous calendar months were retained. Thus,
taking into account the different months, 57 modes of vari-
ation were selected. These modes of variation correspond
to seven different precipitation patterns: ATL (Atlantic),
INT (Interior), SUR (South), POR (Galicia and North-
ern Portugal), CAT (Catalonia), LEV (Levante) and CAN
(Cantabrian).

The rank in the PCA, the percentage of total variance ex-
plained and the pattern they are associated with of the 57
modes of variation are listed in Table 1. Note that not all pat-
terns are detected in each calendar month. It can be seen that
during summer only POR and CAN patterns are found. This
is due to the increasing importance of local factors which
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ATL INT

SUR POR

Fig. 1. Examples of loading maps of the ATL, INT, SUR, POR, CAT, LEV, and CAN patterns. The text gives the month where the pattern
appears and the percentage of variance explained by the pattern for that month.

block the detection of wide, spatially coherent patterns of
precipitation. In Fig. 1 an example of the spatial distribution
loading for each pattern is shown. The loading value repre-
sents the correlation between the station series and the PC,
since Hotelling normalization was used (Jollife, 1986).

These 57 modes of variation associated with seven differ-
ent precipitation patterns constitute a suitable description of
the monthly precipitation field over the Iberian Peninsula and
are the basis of the present study. For a more detailed de-
scription of these modes of variation, please refer to Serrano
et al. (1999a).

3 Spectral analysis methods

While a time series can be analyzed in either the time-domain
or the frequency-domain, the latter is usually more inter-
esting, because the relevant temporal scales of the different

physical processes are easier to distinguish. In order to obtain
a good estimate of the distribution of the power (variance) of
the series versus frequency (the power spectral density), it is
reasonable to apply independent methods. We selected the
following:

1. The Multi-Taper Method (MTM);

2. Singular Spectrum Analysis (SSA): the Monte Carlo
SSA test (MCSSA).

3.1 Multi-Taper Method (MTM)

The purpose of this non-parametric spectral method (Thom-
son, 1982) is to compute a set of independent and signifi-
cant estimates of the power spectrum, in order to obtain a
better and more reliable estimate for finite time series than
with single-taper methods. The MTM provides high spec-
tral resolution, as well as statistical confidence levels for the
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Fig. 1. Continued ....

spectral peaks it detects. It is thus superior to the classical
Blackman-Tukey method, which yields a much lower reso-
lution, and because the confidence levels are independent of
the peak amplitudes. The MTM has been applied to various
fields: Earth sciences, (Lindberg, 1986; Park et al., 1987),
geophysics (Lanzerotti et al., 1986), climatology on inter-
decadal and century time scales (Kuo et al., 1990; Ghil and
Vautard, 1991; Mann et al., 1995) and paleoclimatology with
tree-ring data (Thomson, 1990b), marine core data (Thom-
son, 1990a; Berger et al., 1991), and ice core data (Yiou et al.,
1995).

The method, devised by Thomson (1982) based on the
work of Slepian (1978), consists of objectively finding tapers
in order to minimize the spectral leakage of the power spec-
trum outside a pre-determined bandwidth. Thomson also
shows that onlyK = 2p − 1 tapers are resistant to spec-
tral leakage, wherep is the the half-bandwidth expressed in
Rayleigh frequency units. Thus, onlyK tapers are used in
the calculations.

The method provides an unbiased estimate of the ampli-
tude in the case of a white-noise background, and is robust to
different types of noise and signal patterns. Once the MTM
spectrum has been obtained it is necessary to isolate any pe-
riodic signal corresponding to singular peaks in the power
spectrum. This is accomplished by Thomson’s (1982) re-
shaping procedure with some slight modifications (Mann and
Lees, 1996): the robust noise background estimation proce-
dure. This procedure uses a median-smoothed MTM spec-
trum of the time series in order to provide an estimate of the
underlying noise background. Assuming that this noise was
generated by an AR(1) red noise process, the true noise back-
ground is obtained by fitting an analytical red noise spectrum
to the median-smoothed background estimate. Finally, the
significance of periodic or quasi-periodic peaks in the spec-
trum relative to the estimated red noise background is gauged
by using elementary sampling theory (Percival and Walden,
1986). Elementary sampling theory, used with a single data
taper by Gilman et al. (1963) in their investigation of red
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noise confidence testing in climate spectra, assumes that the
spectra areχ2 distributed withν degrees of freedom in the
spectral estimate. For the adaptive multi-taper spectrum esti-
mateν ≈ 2K. The ratio of power associated with a peak in
the spectrum to the local power level of the background noise

is assumed to be distributed asχ2

ν
, and can be compared to

the tabulatedχ2 probability distribution to determine peak
significances.

3.2 Singular Spectrum Analysis (SSA): a tool for studying
dynamical systems

Singular Spectrum Analysis (SSA) is a data-adaptive method
based on the idea of sliding a window down a time series and
looking for patterns that account for a high proportion of the
variance of the series obtained. This analysis is closely re-
lated to the technique of principal component analysis. The
original purpose of SSA was noise reduction in the anal-
ysis of experimental data and was first applied to nonlin-
ear dynamics by Broomhead and King (1986). Paleocli-
matic records were analyzed by SSA by Fraedrich (1986)
and Fraedrich and Ziehmann-Schlumbohm (1994), who ob-
served that the algorithm could be used to estimate the num-
ber of degrees of freedom necessary to model the dynamics
of an attractor. Vautard and Ghil (1989) refined SSA and
applied it to four long marine cores. They emphasized the
direct physical interpretation of the individual EOFs (empiri-
cal orthogonal functions) obtained with SSA, introducing the
idea of searching for pairs of sinusoidal EOFs in quadrature,
which were taken to indicate a physical oscillation. Various
other records have been analyzed through SSA (the histor-
ical global temperature record, the Southern Oscillation in-
dex) with the introduction of improvements in distinguish-
ing signals from noise. One such problem had been the lack
of effective statistical tests to discriminate between potential
oscillations and noise. Allen and Smith (1996, henceforth
AS96) found that the basic formalism of SSA provides a nat-
ural test for modulated oscillations against an arbitrary col-
ored noise null hypothesis: the Monte Carlo SSA test (MC-
SSA).

3.2.1 Applications of SSA

1. Detecting signals. A natural application of SSA is de-
tecting the signal in a time series. By plotting the eigen-
values in decreasing order, one can identify those EOFs
dominated by a signal and those dominated by noise,
discriminating between high variance oscillations and a
steep slope, and noise characterized by low variances
and a flat floor. The occurrence of a pair of high-ranked
eigenvalues indicates the possible presence of a phys-
ically meaningful deterministic oscillation. While it is
effective at separating signals from pure white noise, the
rank-order is unreliable for systems contaminated with
red noise or for nonlinear systems, in general. High-
ranked pairs could be spurious pairs. We need to decide
on the confidence level to reject the null hypothesis that

the features identified are attributable to the stochastic
component of the record. There are two ways to test for
statistical significance (Elsner and Tsonis, 1996): an-
alytically or with the use of a Monte Carlo approach.
Analytical methods involve assumptions about the dis-
tribution of the particular random variable being used as
the test statistic. The distribution statistics on random
variables from SSA will, in general, be non-Gaussian
and therefore difficult to describe analytically. An ac-
ceptable way around this problem is to use the Monte
Carlo approach. The Monte Carlo SSA test involves
generating surrogate records from a model based on the
null hypothesis, see AS96 for details. The application
of the MCSSA test can be summarized as follows. The
first step in MCSSA is to assume a noise model. Since
a large class of geophysical processes generate series
with large power at the lower frequencies (AS96), a red
noise is a convenient model to begin with. From the
time seriesx(t), the parameters of the red noise are de-
termined by a maximum-likelihood criterion. In order
to test the statistical significance of a signal against the
null hypothesis selected, an ensemble of surrogate time
series is generated with the parameters obtained in the
above step. At each Monte Carlo step an autocovari-
ance matrixCR is computed. These covariance matrices
are projected onto the EOFs of the actual data yielding
an ensemble of eigenvalues from which the confidence
intervals are obtained. Usually the 2.5 and 97.5 per-
centiles are computed. If an eigenvalueλk lies outside
this confidence interval, the time series can be consid-
ered to be different from the generic red noise simula-
tion at the 95% level of significance.

As pointed out in AS96, the main problem with the
above procedure is that data and surrogates are not
treated in the same way, since both the data covariance
matrix and the surrogate covariance matrices are pro-
jected onto the data EOFs. This compresses the variance
into the highest-ranked EOFs in the data but not in the
surrogates, since it is implicitly assumed that none of
the data is noise. AS96 introduces a variant of the MC-
SSA method which is based on the assumption that all
the data is noise, except that which has previously been
established as signal. The procedure followed is then
the same as before, except that data covariance matrix
and surrogate covariance matrices are projected onto the
null hypothesis basis, which is assumed initially to be
red noise. If some of the data eigenvalues lie above
the 97.5 percentile of their corresponding surrogate er-
ror bar, the data are taken to be inconsistent with the
null hypothesis and those eigenvalues with their corre-
sponding EOFs are taken as a signal. Once an eigen-
value and the corresponding EOF is taken as signal, a
new Monte Carlo test is carried out including the EOFs
found to be significant in the null-hypothesis, to check
for other features in the spectrum which may have been
concealed by that signal. This procedure is repeated un-
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Fig. 2. Significant results of MTM for the pattern of March (ATL).
The continuous line is the adaptive MTM spectrum; the various dis-
continuous lines are the median-smoothed spectrum (thick-dashed
line), and the curves associated with the 50%, 90%, 95%, and 99%
confidence levels.

til a null-hypothesis that cannot be rejected is reached.

2. Filtering and reconstructing the time series. Another
application of SSA is to filter the time series, reducing
the background noise without losing any significant por-
tion of the signal. Because the eigenvectors of the time
series are not assumed to be sinusoidal, as in the case
of the basis functions used in Fourier analysis meth-
ods, filtering with SSA is sometimes described as data-
adaptive. Projecting the original time series onto the
individual eigenvectors, one has the temporal principal
components in each direction, which in SSA terms are
called T-PCs. It is possible to reconstruct a filtered ver-
sion of the time record based only on the significant T-
PCs. We take the set of dominant principal components
and construct a filtered time series equal in length to the
original series. The background noise is substantially
reduced in this filtered time series. Then analysis by the
Maximum Entropy Method (MEM), a high resolution
spectral method, clearly reveals the frequency of the os-
cillations.

In sum, the procedure of the spectral analysis performed in
this work will be first, to detect the significant oscillations by
using the MCSSA test; second, to filter and to reconstruct the
time series including only the detected signals; and finally, to
analyze the reconstructed series using the Maximum Entropy
Method (MEM).

4 Results

Due to the great number of time series (57), we shall ex-
plain in detail the procedure for one of them. The results for
the complete set of series will be summarized in the corre-
sponding tables. The example that we shall use to explain

the procedure is the series corresponding to the Atlantic pat-
tern of March. One of the reasons for using March ATL is
that, at the end of the analysis, this case was found to be very
interesting. The SSA-MTM toolkit (Dettinger et al., 1995)
was used to carry out both the MTM and MCSSA spectral
analyses.

4.1 Multi-Taper Method

Due to the shortness of our series (only 74 years), the MTM
was performed usingp = 2 (i.e. a bandwidth of 4/74 cy-
cles/year) andK = 3. The robust red noise assumption was
taken and the adaptive MTM spectrum was constructed. The
spectrum was smoothed with a window of 0.15 cycles/year.
Then a red noise model was fitted to the smoothed spectrum,
obtaining the curves associated with the 90%, 95%, and 99%
confidence levels. The signals are then defined as the parts
of the spectrum lying above the 99% curve.

4.1.1 MTM results

Figure 2 shows the MTM graph for the March ATL pat-
tern, consisting of the power spectrum, the smoothed spec-
trum, and the confidence levels. The significant quasi-cycles
are those whose power surpasses the 99% confidence level.
The intervals of the significant quasi-cycles at the 99% con-
fidence level are summarized in Table 2. Time series with no
significant signals are represented by [—]. One notes that the
ATL pattern presents significant periods in 4 of the 5 months
in which it appears. Similarly, the SUR pattern appears in
10 months and has significant periods in 7 of them. By con-
trast, the CAN pattern is present during the whole year but
has significant periods in only 2 months.

Most of the periods are between 2 and 6 years. Only
two lie outside this interval (8 and 12 years). There are
six months with one significant period: February (4 years),
March (5 years), April (2.5 years), June (3.5 years), Septem-
ber (3.5 years), and October (3.5 years). There are two
months without any significant period: July and August, the
summer months. And there are four months with two signif-
icant periods: January (3 and 8 years), May (5 and 12 years),
November (2 and 6 years), and December (2.5 and 6 years).
The most frequent period is 3.5 years (7 events), followed by
2.5 years (6 events).

The MTM has thus reduced the initial set of 57 time series
to a set of 27 series with significant oscillations. The follow-
ing step is to study these 27 series in detail using MCSSA.

4.2 MCSSA test: finding significant signals

4.2.1 March (ATL)

1. One has first to applydata-adaptive MCSSA to find
the data EOFs associated with the significant pure noise
EOFs. Then, projecting both the data and 10 000 sur-
rogate series onto the data eigenbasisED with a win-
dow width of M = 15, and using 2.5 and 97.5 per-
centile limits, one obtains the data-adaptive eigenval-
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Table 2. MTM significant quasi-periods (year/cycle). Time series with no significant signal are represented by [—]

Month ATL INT SUR POR CAT LEV CAN

JAN 3.5 - 3.8 [—] 8.3 [—] 3.1 - 3.2
FEB [—] 4.1 - 4.3 3.5 - 4.1 3.7 - 4.0 [—]
MAR 4.7 - 5.2 [—] [—] [—] [—]
APR 2.3 - 2.4 2.3 - 2.4 2.3 - 2.6 2.4 [—] [—]
MAY [—] 10.0 - 14.0 4.7 - 5.2 [—] [—] [—]
JUN 3.7 3.4 - 3.5 3.4 - 4.0 3.7
JUL [—] [—]
AUG [—] [—]
SEP [—] 3.4 - 3.6 [—] [—] [—] [—]
OCT [—] [—] [—] [—] 3.4 [—]
NOV 2.0 - 2.1 2.0 - 2.1 5.3 / 5.9 5.8 [—]
DEC 2.5/2.7 2.4 - 2.5/2.6-2-8 5.5 - 5.8/2.6 - 2.7 5.5 - 6.2 [—]

A

Freq. assoc. with EOF k (cy/year)

P
ow

er
 in

 E
O

F
 k

Freq. assoc. with EOF k (cy/year)

P
ow

er
 in

 E
O

F
 k

B

Freq. assoc. with EOF k (cy/year)

P
o

w
e

r 
in

f 
E

O
F

 k
 

C

Freq. assoc. with EOF k (cy/year)

P
ow

er
 in

 E
O

F
 k

 

D

Fig. 3. Monte Carlo SSA of March (ATL): projection onto(a) the data-adaptive basis,(b) red noise null hypothesis basis,(c) composite
null hypothesis basis (including data EOFs 1 and 2),(d) composite null hypothesis basis (including data EOFs 1, 2 and 3). In all cases the
window length wasM = 15 yr. The error bars denote 97.5 and 2.5 percentiles of a 10 000 surrogate series.

ues and the surrogate data bars. These are plotted
against the frequency associated with their correspond-
ing EOFs. Since SSA EOFs are not pure sinusoidal
functions, identifying a single frequency with each EOF
is not straightforward. The association is made by max-
imizing the squared correlation with a sinusoidal func-

tion. If the correlation is maximum with a sine function,
the EOF is odd and the corresponding eigenvalue will
be plotted with a square. If the correlation is maximum
with a cosine function, the EOF is even and the eigen-
value is plotted with a triangle. A sine-cosine oscillatory
pair thus appears when two eigenvalues (a square and a
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Table 3. Summary of MCSSA test results, withM = 15

Pattern Periods (years)
JAN(atl) 3.7
JAN(can) 3.2
FEB(sur) 4.1
FEB(lev) 4.0
FEB(cat) 4.0
MAR(atl) 5.0; trend
MAY(sur) 11.0
JUN(lev) 3.7
JUN(por) 3.5
SEP(sur) 3.4
DEC(lev) 5.8

triangle) lie above their surrogate data bars. In Fig. 3a
one sees that the first and second EOFs are significant
and are located just over the 0.20 cycles/year frequency.

2. The MCSSA test of thepure noise null hypothesis
(projecting both data and surrogates onto theEN noise
basis) is performed with a window width ofM = 15 and
10 000 Monte Carlo surrogate data series. The eigen-
values and the surrogate data bars (percentile limits:
2.5, 97.5) are again plotted against the frequency associ-
ated with their corresponding EOFs (Fig. 3b). Note how
the EOFs of the red noise covariance matrix are regu-
larly separated by almost exactly 1/(2M). A sine-cosine
oscillatory pair appears around the 0.20 cycles/year fre-
quency. They are close together but not superimposed.
This appearance of at least one significant eigenvalue is
indicative of the presence of a quasi-oscillation different
from noise.

Comparing the data-adaptive projection (Fig. 3a) with
the pure noise projection (Fig. 3b) shows that the data
EOFs 1 and 2 are associated with the pure noise EOFs
1 and 2.

3. We then assume that the data EOFs 1 and 2 are associ-
ated with the signal, and include them as signal inthe
composite null hypothesis. Projection onto the com-
posite null hypothesis basis tends to pair up the sig-
nal EOFs just over the frequency corresponding to the
quasi-oscillation, in this case 0.20 cycles/year (Fig. 3c).
If oscillations other than those included in the null hy-
pothesis existed, then new significant oscillatory pairs
would appear. These pairs would have to be included in
a new null hypothesis in the following iteration of the
procedure, continuing the analysis until no new eigen-
value appears as significant. In the present case, there
is one more significant eigenvalue. It corresponds to
the 4th ranked of the data eigenbasis. Its secular pe-
riod indicates a trend. We include this new significant
EOF into another composite null hypothesis including
the 1st, 2nd and 4th data EOFs as signals (Fig. 3d).
Now, no further significant eigenvalues have appeared,

Table 4. Analysis using different window widths.M = Window
width (years), Variance: percentage of the reconstructed component
with respect to the original series

M = 12 M = 15 M = 18 Stability Variance (%)
Pattern Prd (yr) Prd (yr) Prd (yr) M=15

JAN(atl) — 3.7 3.7 NS 12.9
JAN(can) 3.2 3.2 3.2 S 12.7
FEB(sur) — 4.1 — NS 13.4
FEB(lev) — 4.0 4.0 NS 14.7
FEB(cat) 4.0 4.0 4.0 S 14.3
MAR(atl) 5.0; trend 5.0; trend 5.0; trend S 27.3
MAY(sur) — 11.0 — NS 13.4
JUN(lev) 3.7 3.7 3.7 S 33.3
JUN(por) — 3.5 3.5 NS 13.8
SEP(sur) — 3.4 3.4 NS 13.9
DEC(lev) — 5.8 5.8 NS 14.3

which means that the signal is a quasi-cycle of 5.0 years
and a secular trend.

4.2.2 Summary of the results

The results of the applying the preceding process (withM =

15) to each time series are summarized in Table 3. Only these
eleven patterns presented significant signals.

It is now necessary to check whether these significant
quasi-oscillations are stable against changes in the window
width. Some sensitivity of results to window width is in-
evitable due to the constraint that the EOFs must be orthog-
onal, but if a pair only appears for certain values ofM, this
is a reason to doubt its significance. But unfortunately, the
converse is not true: the stability of an oscillatory pair does
not assure its physical significance (Allen and Smith, 1996).

The entire process (pure noise projection and composite
null hypothesis test) was repeated withM = 12 andM = 18,
and some interesting results were found (Table 4) which will
be discussed in the following subsection.

4.2.3 The selected quasi-cycles: moving window analysis

The analysis of signal stability by changing the window
width revealed that not all the pre-selected signals are sta-
ble. Table 4 lists the results for the three windows, and shows
how there are signals that are significant only for certain win-
dows, whereas there are other signals that are significant for
all three windows. The table gives the most important char-
acteristics of the signals: their stability, the quasi-period, and
the variance explained (in the case ofM = 15). This vari-
ance was computed as the sum of the variances explained by
each of the significant EOFs associated with the quasi-cycle.

The signals can thus be classified into “stable” (S), in-
dicating the presence of eigenvalues in the three windows,
and “non-stable” (NS), indicating the absence of signifi-
cant eigenvalues in some window. From Table 4, one ob-
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serves four stable quasi-oscillations (January (CAN), Febru-
ary (CAT), March (ATL), and June (LEV)). Also, the oscil-
lations corresponding to March (ATL) and June (LEV) are
well defined (in the sense that they lie clearly above the sur-
rogate bars) atM = 15 andM = 18. The rest of the quasi-
oscillations seem to be unstable and poorly defined. For that
reason, the initial selection of significant quasi-cycles has to
be questioned. Observing Table 4, one might conclude that
the “best” quasi-cycle is the 3.7 years of June (LEV), be-
cause it is stable, well defined (atM = 15 andM = 18),
and explains 33.3% of the variance, better than, for example,
March (ATL) which, while it is stable, and well defined (at
M = 15 andM = 18), only explains 27.3% of the variance.
That conclusion could be misleading.

Therefore, a moving window analysis is performed in or-
der to assess the dates for which the oscillations remain sig-
nificant. The moving window analysis slides a window of
length S down a series of lengthN , generating a set of
N − S + 1 sub-series that will be studied, one by one, with
MCSSA. If the oscillation of the original series remains sig-
nificant in each of the sub-series, one can conclude that the
oscillation is stable over the entire original period (N ), i.e.
the oscillation is not a particular event during a certain tem-
poral interval that appears as significant in the analysis of
the whole period. To this goal, MCSSA was performed with
M = 12 instead ofM = 15, since with a moving window
width of S = 61, a lower value ofM will preserve the sig-
nificance level. The window widthS = 61 generates 14 sub-
series from each series. These were analysed using MCSSA
under the null hypothesis of pure noise.

The results showed that the oscillation of June (LEV) was
significant only around the first part of the 1919–1992 period
and was not significant in the 1927–1992 period. It seems
that the oscillation was so strong in this first part of the time
series that it remained significant in the analysis of the whole
period. Only by analyzing the sub-series can one delimit the
period of existence of the oscillations. In our case, the oscil-
lations of January (CAN), February (CAT), and March (ATL)
were significant during the whole 1919–1992 period. In all
three cases, the significance of the oscillations tended to de-
crease in the last years of the period.

For the case of March (ATL), there was an interesting evo-
lution of the ranking of the eigenvalues in the different sub-
series. The two eigenvalues (ranked 1 and 2) associated with
the quasi-cycle of 5 years remain in this position in all the
sub-series. The third position, however, is occupied by an
eigenvalue corresponding to a quasi-cycle of 2.5 years and
not by the eigenvalue corresponding to the trend, which is
situated in the last place of the ranking from sub-series 1 to
sub-series 8. In sub-series 9, the eigenvalue corresponding to
the secular trend begins to climb in rank, arriving at the third
position by sub-series 14. This concurs with the form of the
trend (Fig. 4) obtained by reconstructing the series including
eigenvalue 3 of the pure noise MCSSA withM = 15 (whole
period). One observes that the downward trend starts around
the 1960s and continues until the 1990s (the last three years
of the series), when it seems to bottom out.
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Fig. 4. Reconstructed series for March (ATL):(a) including only
EOFs 1 and 2, corresponding to the quasi-oscillation,(b) including
only EOF 3, corresponding to a long-term trend,(c) original time
series plus reconstructed signal including EOFs 1, 2, and 3.

The case of January (ATL) is particular and calls for at-
tention. When the pure noise MCSSA was performed with
M = 12, no significant oscillations were found at the 95%
level of confidence. But in the moving window analysis of
this series withM = 12 and 95%, there appears a significant
eigenvalue in 9 of the sub-series. This result suggested the
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Fig. 5. Maximum Entropy Method (MEM) spectrum of the reconstructed series:(a) MEM spectrum of the reconstructed series of January
(ATL) including only EOF 1, corresponding to a 3.7 year oscillation.(b) MEM spectrum of the reconstructed series of January (CAN)
including only EOF 1, corresponding to a 3.4–3.1 year quasi-oscillation.(c) MEM spectrum of the reconstructed series of February (CAT)
including EOF 1, corresponding to a 4.0 year oscillation.(d) MEM spectrum of the reconstructed series of March (ATL) including EOFs 1,
2, and 3, corresponding to a long-term trend, and a 5.2–4.7 year quasi-oscillation.

repetition of the analysis at a 90% confidence level. Now, a
significant eigenvalue was found for the three windows and
in the composite null hypothesis analysis. The oscillation
was also significant in the whole set of sub-series of the mov-
ing window analysis. For these reasons, this quasi-cycle of
3.7 years of January (ATL) merits inclusion among the se-
lected quasi-oscillations.

4.3 Studying the significant signals

Once significant stable signals were found, we could make a
detailed study of their associated frequencies. We obtained
the filtered time series by reconstruction with the signifi-
cant data EOFs. Figure 4 shows the reconstructed quasi-
oscillations and the original time series plus the filtered sig-
nals for the March (ATL) pattern. These filtered signals were
analyzed using the Maximum Entropy Method (MEM). Fig-
ure 5 shows the different signals. In Fig. 5a, one can observe
a clear oscillation of 3.7 years in January (ATL). Figure 5b
shows the quasi-oscillation of 3.4–3.1 years (maximum at 3.1
years) present in January (CAN). Figure 5c is the oscillation
of 4.0 years of February (CAT). Figure 5d, corresponding

to March (ATL), shows the presence of a trend and a quasi-
oscillation of 5.2–4.7 years.

5 Composite maps

Once the oscillations have been identified (quasi-cycles and
trends), a composite analysis is performed, in order to detect
any sea level pressure structure that occurs simultaneously
at high values of the quasi-oscillations found for a certain
precipitation regime. This could be a sign of the existence
of possible relationships between these oscillations and sea-
level pressure (SLP). We applied a composite analysis to the
SLP anomalies and tested the average values for a significant
difference from the mean using Student’s t-test.

The series with the four best quasi-oscillations were se-
lected as index series. The series were reconstructed by in-
cluding the EOFs associated with the pure noise significant
eigenvalues (i.e. including only the detected quasi-cycles and
trends). The composite analysis was performed with:

1. The reconstructed series of January (ATL), including
EOF 1 corresponding to the quasi-cycle of 3.7 years;
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Fig. 6. Composite map of SLP (in mm Hg) for March correspond-
ing to wet years according to the pattern March (ATL). Dots cor-
respond to 10◦ × 10◦ boxes where Student’s t-test for the differ-
ence in the means of wet and non-wet years was not significant at
a confidence level of 99%. Crosses correspond to boxes where that
difference was significant.

Fig. 7. Composite map of SLP for March corresponding to non-wet
years according to the pattern March (ATL).

2. The reconstructed series of January (CAN), including
EOF 1 corresponding to the quasi-cycle of 3.2 years;

3. The reconstructed series of February (CAT), including
EOF 1 corresponding to the quasi-cycle of 4.0 years;

4. The reconstructed series of March (ATL), including
EOFs 1, 2, and 4 corresponding to the quasi-cycle of
5.0 years and the secular trend.

These index series were composited with the sea-level
pressure series, obtained from COADS (Comprenhensive
Ocean-Atmosphere Data Set, (Woodruff et al., 1987)), for
the period 1919–1992 and using boxes of 10◦ latitude ×

10◦ longitude. A threshold of 0.6 σ separated the wet years
from the non-wet years. Using Student’s t-test, with a con-
fidence level of 95%, we found that only two reconstructed
series showed significant differences between the means of
SLP corresponding to wet years and non-wet years: January
(ATL) and March (ATL). The composite maps of these series

Fig. 8. Composite map of SLP for January corresponding to wet
years according to the pattern January (ATL).

Fig. 9. Composite map of SLP for January corresponding to non-
wet years according to the pattern January (ATL).

are shown in Figs. 6–9, in which the dots indicate the boxes
with no significant values under the t-test and the crosses in-
dicate the significant boxes. Less significant but still very
interesting are the structures observed in the composite maps
corresponding to the reconstructed series of January (CAN).
No other significant results were found in the rest of the com-
posite maps.

Figures 6 and 7 show the composite maps corresponding
to the wet and non-wet years of the reconstructed series of
March (ATL). There are four significant boxes, in the area
of the North Atlantic Ocean and in the Cantabrian zone. Fig-
ures 8 and 9 represent the maps for the wet and non-wet years
of the reconstructed series of January (ATL). There are four
significant boxes in the Atlantic zone near the Peninsula. The
location of the high pressure structures is different during the
wet years and during the non-wet years of the same series.
There is also a similarity between the structures of the wet
years of January (ATL) and of March (ATL), and also of the
non-wet years of the same two series.

The two different circulation patterns for wet and non-wet
years for the ATL pattern (Figs. 6 and 7 for the case of March,
and Figs. 8 and 9 for the case of January) seem to be a mani-
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Fig. 10. Composite map of SLP for January corresponding to wet
years according to the pattern January (CAN).

Fig. 11. Composite map of SLP for January corresponding to non-
wet years according to the pattern January (CAN).

festation of the North Atlantic Oscillation (NAO).
The composite maps for the wet years for the ATL pattern

(Figs. 6 and 8) show a zonal mean circulation over all the At-
lantic Coast of Europe including the Iberian Peninsula, with
only the low latitudes being affected by the semipermanent
high pressure systems. This situation corresponds to a low
NAO index. This atmospheric situation allows cyclonic per-
turbations to cross the Peninsula, leading to large amounts of
rainfall over Portugal and most of Spain.

These results for January and March agree with the work
of Zorita et al. (1992), who found the NAO to be one of
the major factors of the winter precipitation over the Iberian
Peninsula.

On the contrary, the composite maps for the non-wet years
for the ATL pattern (Figs. 7 and 9) show that the high pres-
sure belt has expanded northwards to cover the Iberian Penin-
sula. This situation corresponds to a high NAO index result-
ing from the very high values of the pressure over the Azores.
Now, the zonal circulation has moved to higher latitudes with
the flows over the Iberian Peninsula being weaker and with
a highly meridional character. This keeps the tracks of low
pressure systems to the north, far from the Iberian Peninsula,
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Fig. 12. Singular Spectrum Analysis for NAO March (left) and re-
constructed component with EOF 1 (right).

resulting in very dry periods.

The contrary situation occurs for the CAN precipitation
regime in January. The wet years (Fig. 10) occur for a high
NAO index with a high pressure structure located over the
Azores. Under these conditions, the Atlantic air masses cross
the Iberian Peninsula from northwest to southeast, leading to
precipitation at the northern part of the Cantabric mountain
chain, which is the region associated with the CAN pattern.
The non-wet years (Fig. 11) correspond to conditions of a
low NAO index. In this situation, the Atlantic air masses
cross the Iberian Peninsula from southwest to northeast, ar-
riving dry and warm at the Cantabrian coast after suffering
the Foehn effect over the Cantabrian mountain chain.

It is surprising the decrease in rainfall found for the low
frequency component in the ATL pattern in March (Fig. 4).
No similar situation is found in any other pattern or month.
This decrease in March precipitation over the Iberian Penin-
sula has been reported in other works for Portugal (Corte-
Real et al., 1998; Trigo and DaCamara, 2000) and for the
Iberian Peninsula (Serrano et al., 1999b). In addition, an im-
portant increase in the monthly precipitation for the months
of March (and October to a lesser extent) on the west coast
of Ireland has been reported by Kiely et al. (1998).

In order to look for the causes of this trend, taking into
account the suggested relationship between the NAO and the
monthly precipitation characterized by the ATL regime, an
SSA for the NAO index (based on the difference of normal-
ized sea level pressure (SLP) between Ponta Delgada, Azores
and Stykkisholmur/Reykjavik, Iceland, see http://www.cgd.
ucar.edu/∼jhurrell/nao.html#oseas) for March has been per-
formed. Figure 12 shows the spectrum of eigenvalues versus
frequency. It can be seen that the leading eigenvalue is asso-
ciated with a trend. The series reconstructed with this eigen-
value is shown in Fig. 12. One observes a significant increase
in the NAO index from the beginning of the sixties. This be-
havior agrees with the decrease shown by the precipitation
described by the ATL pattern during March (Fig. 4).

Further SSA analyses were performed on the NAO index
for the other winter months (December, January and Febru-
ary) and no similar trend was found for any of them, thus,
confirming that the trend occurs only in March.
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6 Discussion of the results

The use of two quite different methods of spectral analysis
allows one to glean more information from the time series.
The periods or quasi-periods selected as significant in this
work were those that satisfy the requirements for a signal in
both methods.

The MTM offered a preliminary view of the characteris-
tics of the series, and focused our attention on a group of
27 series and 31 quasi-oscillations. The MTM results were
given in Table 2. These quasi-periods are temporal intervals
defined by the sections of the spectral peaks that surpass the
99% confidence level. There was a notable absence of pat-
terns and quasi-periods during the summer months (July and
August) consistent with the very occasional nature of precip-
itation in this season. Most of the quasi-periods ranged from
2 to 6 years. Only two of them lay outside this interval: the
signal of the CAT pattern of January (8 years) and that of the
SUR pattern of May (10–14 years). It has to be kept in mind
that since the series are 74 years long, periods longer than
8–10 years have less statistical significance than those of 3–5
years.

The MCSSA results (Table 3) selected only 11 quasi-
oscillations, with more precise frequencies, that were within
the temporal intervals defined by the MTM. The analysis of
the stability of the signals (Table 4) indicated that there are
only four stable quasi-cycles (significant eigenvalues for the
three windows, 12, 15 and 18 years) at the 95% confidence
level:

1. The quasi-oscillation of 3.2 years in the Cantabrian pat-
tern of January;

2. The quasi-oscillation of 4.0 years in the Catalonian pat-
tern of February;

3. The quasi-oscillation of 5.0 years and a trend in the At-
lantic pattern of March;

4. The quasi-oscillation of 3.7 years in the Levante pattern
of June;

and one stable quasi-cycle at the 90% confidence level: the
quasi-oscillation of 3.7 years in the Atlantic pattern of Jan-
uary.

The moving window analysis of the five stable quasi-
oscillations showed the oscillations of January (CAN), Jan-
uary (ATL), February (CAT), and March (ATL) to be de-
fined over the whole study period 1919–1992. The quasi-
oscillation of June (LEV) appeared to be associated with only
the first part of the period (1919–1927): in the rest of the
period, the oscillation was not significant. Therefore, we re-
jected the oscillation of June.

The reconstruction of the filtered signals (Fig. 4) showed
the March (ATL) trend to be clearly downward which could
be justified by the increase in the NAO index for that month.
The MEM analysis of the reconstructed signals (Fig. 5)
showed that the 5.0 year oscillation of March (ATL) ap-
peared inside a quasi-oscillation of 5.2–4.7 years. The 3.2

year oscillation of January (CAN) appeared inside a quasi-
oscillation of 3.4–3.1 years.

The study of the composite maps of the selected quasi-
oscillations indicated that:

1. The high values of precipitation generated by the quasi-
cycle of the ATL pattern in March exist simultaneously
with a high pressure structure over the North Atlantic
Ocean;

2. The high values of precipitation generated by the quasi-
cycle of the ATL pattern in January exist simultaneously
with that same pressure structure over the North At-
lantic Ocean;

3. The high values of precipitation generated by the quasi-
cycles of the CAN pattern in January exist simultane-
ously with another pressure structure over the Galicia
zone and Cantabrian Sea.

Among the significant quasi-oscillations found in this
work, the downward trend in March has been reported be-
fore for Portugal (Corte-Real et al., 1998; Trigo and DaCa-
mara, 2000) and for the Iberian Peninsula (Serrano et al.,
1999b). With reference to the rest of the significant oscil-
lations, which correspond to short periods between 3 and
5 years, similar results have been reported by Rodriguez-
Puebla et al. (1998) using annual time series, and by Garcı́a
et al. (2002) using continuous quarterly data.

As was established before in the composite analysis, sea
level pressure patterns which occur simultaneously with the
oscillations seem to be related to the NAO. A spectral anal-
ysis of the NAO index (Hurrel and Van Loon, 1997; Wun-
sch, 1998; Robertson, 2001) reveals a quasi-oscillation with
a period of about 2.5 years which is somewhat shorter than
ours. However, Tourre et al. (1999), studying spatiotemporal
patterns of joint sea surface temperature and sea level pres-
sure variability in the Atlantic Ocean, found a 3.5 year pe-
riod which corresponds to an SLP dipole-like pattern similar
to the NAO, and a 4.4 year period related to pressure anoma-
lies located between Iceland and Greenland. Both patterns
could affect the strength of westerly winds, and therefore the
precipitation regimes, over a large area including the Iberian
Peninsula. Also, Venegas and Mysak (2000) found periods
around 5 years, 2.7 years and 2.1 years for North Atlantic
SLP anomalies.

It is cautiously concluded that the short periods detected in
the analysis could be related to the oscillations found in the
sea level pressure over the North Atlantic Ocean.
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Garćıa, J. A., Serrano, A., and Gallego, M. C.: A spectral analysis
of iberian peninsula monthly rainfall, Theor. Appl. Climatol., 71,
77–95, 2002.

Ghil, M. and Vautard, R.: Interdecadal oscillations and the warm
trend in global temperature time series, Nature, 350, 324–327,
1991.

Gilman, D. L., Fuglister, F. L., and Mitchell, J. M. J.: On the power
spectrum of red noise, J. Atmos. Sci., 20, 182–184, 1963.

Hurrel, J. and Van Loon, H.: Decadal variations in climate asso-
ciated with the north atalntic oscillation, Climatic Change, 36,
301–326, 1997.

Jollife, I.: Principal Component Analysis, Springer-Verlag, 1986.
Kiely, G., Albertson, J. D., and Paralange, M. B.: Recent trends in

diurnal variation of precipitation at valentia on the west coast of
ireland, J. Hidrol., 208, 1998.

Kuo, C., Lindberg, C. R., and Thomson, D. J.: Coherence estab-
lished between atmospheric carbon dioxide and global tempera-
ture, Nature, 343, 709–714, 1990.

Lanzerotti, L., Thomson, D. J., Maclennan, C. G., and Medford,
L. V.: Electromagnetic study of the Atlantic continental mar-
gin using a section of a trasatlantic cable, J. Geophys. Res., 91,
7417–7427, 1986.

Lindberg, C. R.: Multi-Taper Spectral Analysis of Terrestrial Free
Oscillations, Ph.D. thesis, Scripps Institution of Oceanography,
University of California, San Diego, 1986.

Mann, M. E. and Lees, J. L.: Robust estimation of background noise
and signal detection in climatic time series, Clim. Change, 33,
409–445, 1996.

Mann, M. E., Park, J., and Bradley, R. S.: Global interdecadal and
century-scale climate oscillations during the past five centuries,

Nature, 378, 266–270, 1995.
Park, J., Lindberg, C. R., and Vernon III, F. L.; Multi-Taper spectral

analysis of high-frequency seismograms, J. Geophys. Res., 92,
12 675–12 684, 1987.

Percival, D. B. and Walden, A. T.; Spectral Analysis for Physi-
cal Applications, Cambridge University Press, Cambridge, UK.,
1986.

Robertson, A.; Influence of the ocean–atmosphere interaction on
the artic oscillation in two general circulation models, J. of Cli-
mate, 14, 3240–3254, 2001.

Rodriguez-Puebla, C., Encinas, A. H., Nieto, S., and Garmendia, J.:
Spatial and temporal patterns of annual precipitation variability
over the iberian peninsula, Int. J. Climatol., 18, 299–316, 1998.
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