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Abstract. In the first part of the paper we study the geo- (a) The correlation dimension of theE index time series
metrical characteristics of the magnetospheric ions’ time se-  cannot be distinguished from that of a stochastic signal
ries in the reconstructed phase space by using the SVD ex-  with the same power spectrum and amplitude distribu-
tended chaotic analysis, and we test the strong null hypothe-  tion as the original data.

sis supposing that the ions’ time series is caused by a linear
stochastic process perturbed by a static nonlinear distortion.
The SVD reconstructed spectrum of the ions’ signal reveals
a strong component of high dimensional, external coloured

noise, as well as an internal low dimensional nonlinear de- (c) There is some evidence for nonlinearity in the index
terministic component. Also, the stochastic Lorenz system =~ ime series. Itis not clear whether the nonlinearity of the
produced by coloured noise perturbation of the deterministic AE index is the result of the intrinsic dynamics of the

Lorenz system was used as an archetype model in compari-  magnetosphere or the result of the nonlinearity in the
son with the dynamics of the magnetrospheric ions. solar wind.

b) There is no evidence for the existence of low dimen-
sionality according to their estimate of correlation di-
mension obtained by using Takens’ method.

Key words. Magnetospheric physics (energetic particles) — (d)

. . ) Because the magnetosphere is largely controlled b
Radio science (nonlinear phenomena) e P gely y

the solar wind, this alone should provide evidence
against the existence of a strange attractor in Alie
index, as the magnetosphere is a randomly driven, non-
autonomous system.

1 Introduction

(e) There is no evidence for low dimensionality of th&
Many theoretical and experimental studies support the hy- ~ indeéx and no evidence that thek index can be de-
pothesis that the magnetosphere can be described as a low Scribed by a low dimensional strange attractor.

dimensional chaotic system. Theoretically, it was intro- |, 5 recent series of papers, an extended chaotic analysis has
duced by Pavlos (1988, 1994), Baker et al. (1990), Klimaspgen developed by Pavlos et al. (1999a, b, c), Athanasiu and

etal. (1991, 1992) andafos (1991). Experimentally, itwas  payjos (2001), in which convincing answers to the above crit-

introduced by using the chaotic analysis of magnetospherigjsm against the existence of internal low dimensional and

time series as has been discussed in Vassiliadis gt al. (199@na0tic magnetospheric dynamics have been given. Accord-
19_92), Shan et al. (1991), Roberts et al. (1991), Prichard anqing to these papers the magnetospheric chaos hypothesis is
Price (1992), Pavlos et al. (1992a, 1992b, 1994). strongly supported by studying the geometrical and dynami-
Parallel to these studies a fruitful criticism has been devel-ca| characteristics of the magnetospheric time series and their
oped about the supposition of magnetospheric chaos, espeorresponding nonlinear surrogate data. In these studies a
cially in relation to its experimental evidence (Prichard and more effective method for constructing surrogate data was
Price, 1992, 1993; Price and Prichard, 1993; Price et al.used which was developed by Schreiber and Schmitz (1996)
1994; Prichard, 1995), based on the strong null hypothesegnd Schreiber (1998). Also in the last study by Pavlos et
for stochasticity of Theiler (Theiler et al., 1992a, b). The al. (1999c), the results of the chaotic analysis of the mag-
above criticism includes the following assertions: netospheric time series are compared with corresponding re-
sults obtained by analysing different types of stochastic and
Correspondence td3. P. Pavlos (mathanas@ee.duth.gr deterministic input-output systems. In the same study the
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10 | ‘ | ‘ | ‘ the trajectory of the system in its phase space (Pavlos et al.,
- ) ] (b) 1999a, b; Abarbanel et al., 1993; Grassberger and Procac-
°7] Energetic Particles (lons) cia, 1983; Tsonis, 1992); (b) testing techniques for the dis-
crimination of low dimensional, nonlinear determinism and
linear stochastic processes (Provenzale et al., 1992; Theiler,
1991; Theiler et al., 1992a, b, 1993); (c) forecasting algo-
rithms (Casdagli et al., 1991; Farmer and Sidorowich, 1987;
Weigend and Gershenfeld, 1994). The above methods con-
stitute the kernel of the chaotic analysis algorithm. This al-
gorithm has been enriched recently by new results concern-
38— el ing the application of chaotic analysis in known stochastic
systems and input-output systems (Argyris et al., 1998a, b;
“ 3 ) Pavlos et al., 1999a, b, c), as well as by using the SVD anal-
Log. of Frequency ysis for calculating the spectrum of SVD reconstructed com-
ponents of an experimental time series (Elsner and Tsonis,
Fig. 1. Power spectrum of the full magnetosphere energetic ion51996; Pavlos et al., 1999c; Athanasiu and Pavlos, 2001).

time series. In the following we summarize the main points of the al-
gorithm concerning the chaotic analysis of the experimental
signals, which will be used in Sect. 3 for the analysis of the

spectrum of the SVD reconstructed components of an exenergetic particle signal.

perimental time series was used as a tool for discriminating

between directly external driven and storage-release magney 1 cjassical analysis of time series

tospheric processes. Athanasiu and Pavlos (2001) extended

this concept of the_ SVD spectrum analysis to the magnetorpyo (jassical theory of time series includes the analysis ei-
sphericAE index time series and concluded the existence

of an external, strong, high dimensional, coloured com o_ther in the time or in the frequency domains (Tong, 1990;
nentin the m ,n A g’h m%*E index. whi h, 1 be di rim-p Priestley 1988). Both domains are related by the Wiener-
€ € magnetosphe X, Which can be gisc Khintchine theorem according to which if the autocorrela-

m;:i?]tbé'ix::?Lr;%jtlsvsvud'rlergﬁlo?hﬂ E@g;igiz?oe;; ;Oam:tion function of the signalC(¢), sufficiently decays rapidly
P X PP Y 95in time, then the power spectrum is equal to the Fourier trans-

netospheric chaos were found by Goode et al. (2001) using | of the autocorrelation function and is given by
AL index data. For a review of studies concerning magneto-

spheric chaos and nonlinear dynamics applied to the Earth’s o
magnetosphere, refer to Klimas et al. (1996). P(w) = C(t)e " dr. 1)

In this work the chaotic analysis algorithm is applied for —00
the study of a new magnetospheric time series corresponding
to energetic ions. Some evidence for the low dimensionalln many cases the power spectra of experimental time series
chaotic character of this time series was given by Paviosapproximately follow a power law of the for(w) ~ @™,
et al. (1999c). Moreover, we extend the study of energeticn Fig. 1 the power spectrum of the energetic ions’ time se-
ions time series by examining its geometrical and dynami-ries is presented where it can be seen that the expenent
cal characteristics. In Sect. 2 we present some theoreticdpkes values in the range (1, 3). In general, with a stochas-
concepts and results concerning the background of chaotitic process(z), with spectrum density proportional to*,
analysis, including the embedding theory, and the method oft is possible to correspond to a self-affine fractal Brownian
SVD analysis. In Sect. 3 we present the results of the chaotignotion (fBm), with H = (« — 1)/2 and fractal dimension
analysis for the energetic ions’ time series. Finally, in Sect. 4D = 1/H (Osborne and Provenzale, 1989). Because of this,

we summarise and discuss the conclusions of this paper. as we show in Sect. 2.7, the Grassberger and Procaccia algo-
rithm cannot distinguish between the deterministic chaotic

dynamics and a stochastic fractal system (coloured noise),
2 Theoretical framework where small space scales are related to small time scales. It

follows from Eq. (1) that when the power spectrum obeys a
The main purpose of time series analysis is to extract signifipower law, then the autocorrelation function decays as the
cant information for the underlying dynamics of the observedlag timez increases. These characteristics can be caused by
signal, as well as to develop effective methods for modellinglinear-nonlinear stochastic dynamical systems or by low di-
and prediction. Classical time series analysis confronts thesmensional chaotic dynamical system. Also, the classical time
problems by using linear or nonlinear input-output methodsseries analysis cannot discriminate between these two cases,
(Priestley, 1988). On the other hand, the modern analysisvhile the chaotic analysis, as discussed in the following, can
of a time series,known as chaotic analysis includes: (a) esdiscriminate with high confidence between linear stochastic-
timation of the geometrical and dynamical characteristics ofity and low dimensional chaos.

Log. of Spectral Density
\
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Fig. 2. (a)—(d) The stochastic Lorenz signal corresponding to the coloured noise perturbatioe3#%.1) and its SVD reconstructed
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estimated for the signals shown in Fig. 2a—d correspondingly, with embeaddia® — 8 andw = 100.

2.2 Embedding theory and phase-space reconstruction

“self-organization” may give rise to the system evolution on
a low dimensional manifoldf of dimensiond. This means

1977

The Earth’s magnetosphere is a system of magnetizethat the magnetosphere can be described macroscopically by

plasma, which microscopically is an infinite dimensional a low dimensional dynamical system @fmacroscopic de-
system, the dynamics of which is mirrored in the ground grees of freedom witm > d. For linear systems, “self-

measuredA E index or in the energetic particles’ burst ob- organization” is more an externally driven process described
served by spacecraft in situ in the magnetosphere or in théy the external parameters of the system. For nonlinear and
interplanetary space (Pavlos et al., 1999c). Some kind oflissipative systems, however, it is possible that the system
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describes the measurement function. When there is a noisy

1.0 T T T T T T T T T
1 S componeniw(t;) then the observed time series must be given
=08 ] by x(#;) = h(x(t;), w(t;)). On the other hand, Takens (1981)
3 ] showed that for autonomous and purely deterministic sys-
R e tems, the delay reconstruction m&pwhich maps the states
0_04; O~ Loenz (e=01) | x into m-dimensional delay vectors
8 . —X— Lorenz-V1 (e=0.1)
S S ahudhon @ (x) = [h(®), h(fT (), h(fZ x)), s (ST 01(2)
o2 —— LorenzV1 (e=05) |
i is an embedding when > 2n 41, wheren is the dimension
T e A L o e e of the manifoldM of the phase space in which evolves the
0 25 50 75 mi_;é?k)ﬁo 175 200 225 250 d_ynamics of the_system. This_mgans that interesting geomet-
rical and dynamical characteristics of the underlying dynam-
ics in the original phase space are preserved invariably in the
10 — reconstructed space as well.
0s ] (b)] Let X, = ®“(X) be the reconstructed phase space and
= PR x,(t;)) = ®(x(t;)) the reconstructed trajectory for the em-
3% BEDA bedding®. Then the dynamics evolved in the original phase
§ 04 | THTemos space is topologically equivalent to its mirror dynamical flow
© o2 i in the reconstructed phase spateaccording to
§<>_oi 3 flx,) = ®(x) o f1(x) o @ x,). 3)
027 B In other words, the embeddinpyis a diffeomorphism which
04 ‘ ‘ ‘ takes the orbitsf’(x,) of the original phase space to the
0 2 LaﬁgO(k) 75 100 orbits in t_he r_econstructed phase in suc_h a way as to_ pre-
serve their orientation and other topological characteristics
as eigenvalues, Lyapunov exponents or dimensions of the at-
10 ‘ tractors. According to the above theory, in the reconstructed
0] ©] phase space we can estimate geometrical characteristics as
= 06| ;“ZV:O - dimensions, which correspond to the degrees of freedom of
S 04 om0t the underlying dynamics of the experimental time series, as
202 o emes well as dynamical characteristics as Lyapunov exponents,
© 00 ] mutual information and predictors (Pavlos et al., 1999a, b).
é'o'zf - Moreover, it is shown elsewhere that the method of recon-
<047 B structed phase space conserves its significance even when the
087 B observed signal is derived by a stochastic process (Argyris et
08 i i i al., 1998; Pavlos et al., 1999c).
0 25 50 75 100
Lag(k)

2.3 Correlation dimension

Fig. 3. (a) Tiie autocorrelation cqefﬁcients of.the deterministic The theoretical concepts described above permit us to use
x(r) Lorenz signal, of the stochastiar) Lorenz signal and it¥'s  experimental time series in order to extract useful geomet-
SVD component corresponding to the levels= 0.1 (37%) and " p a4 cteristics, which provide information about the un-

e = 0.5 (185%) of the external additive coloured noise perturbaition.derl ina dvnamics. Such a characteristic is the correlation
(b) The autocorrelation coefficients of th®_15 SVD component dim?a/ns%on)ll) definéd as

of the stochastia (r) Lorenz signal corresponding to the two levels
e = 0.1 (37%) anc: = 0.5 (185%) of the external additive coloured _i d[InC(r)] 4
noise perturbation(c) The same with Fig. 3b but for thg, SVD D= r[PO dlin(r)] )

component. . . . .
P whereC(r) is the so-called correlation integral for a radius

r in the reconstructed phase space. When an attracting set
exists, therC (r) reveals a scaling profile
evolves by its internal dynamics in such a way that the cor- d
responding phase space flow contracts on sets of lower di¢ ") ~ 7" for r—0 ®)
mensions which are called attractors. The embedding theorffhe correlation integral depends on the embedding dimen-
permits one to study the dynamical characteristics of a physsionm of the reconstructed phase space and is given by the
ical system by using experimental observations in the formfollowing relation
of time series (Takens, 1981; Broomhead and King, 1986). N N
Letx(r) = f(’)(x(O)) denote the dynamical flow underly- C(r,m) = 2 Z Z O@r— | x@) —x() |, (6)
ing an experimental time seriest;) = h(x(t)), whereh N(N -1 = St
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Fig. 4. (a, b)The spectra of the singular values i = 1 — 15 corresponding to the purely deterministic) Lorenz signal, to the stochastic
x(t) Lorenz signal and it%/4, Vo_15 SVD components estimated for the levels= 0.1 (37%) ande = 0.5 (39%) of the external noise
perturbation.

where®(@) = 1ifa > 0,0@0) =0ifa < 1, andN is
the length of the time series. The scaling expor&nt) in-

series as follows:

_ T
creases as we increase the embedding dimemsiowhen ;Cgli x(g :TT)) h igl i EZ _ 32 i%
the time series is related to a low dimensional dynamicalX = 2, 2 o M2 =|"21|,(7)
system therd(m) saturates at a final valup for a suffi- X(ty). x(ty + 7). . x(ty + (1 — I)7) o

ciently large embedding dimensiamg. Theoretically, the
valuemy is the smallest integer larger thdn according to  wherex(r;) is the observed time series ands the delay
Ding et al. (1993), butin practioeg may attain larger values  time for the phase space reconstruction. The rows of the tra-
(Kugiumtzis, 1996), i.e. is an appropriate embedding may rejectory matrix constitute the state vector§ on the recon-
quire a largern than the smallest integer larger than structed trajectory in the embedding spate As we have

For periodic attractors the correlation dimensibnbe-  constructedV state vectors in the embedding spa’e the
comes equal to the topological dimensidof the manifold ~ problem is how to use them in order to find a set of linearly
M, which includes the attractor. Usually for a strange attrac-independent vectors iR" which can satisfactorily describe
tor, D obtains a fractal value. the attracting manifold within the phase space according to

When the sloped (m) of the correlation integrals reveal the theoretical concepts of Sect. 21 These vector; constitute
a plateau at low values of and the plateau converges for Partof a complete orthonormal bagés, i = 1,2, .n} in R
increasingn, then this is strong evidence for low dimension- and can be construct_ed as a linear cc_)mblnatlon (_)f vectors on
ality of the underlying dynamics for the observed signal. Thethe reconstructed trajectory Rf* by using the relation
stochastic component behaving as noise in the experimentglr y _ oicl . @8)
time series, destroys the plateau and the saturation profile at !
low values of the radius, and makes the derivation of reli- According to singular value decomposition (SVD) theorem,
able dimension estimates difficult (Pavlos et al., 1999c). it can be proved that the vectarsandc; are eigenvectors of

the structure matrixXX” and the covariance matrix” X of

2.4 Singular value analysis (SVD) and SVD reconstructedtN€ trajectory, according to the relations
components of the original time series XXTs; = o2s;, X1 Xe; = o2e, 9)

Singular value analysis has been proven to be a strong and ef$€€ Brogan, 1982). The vectars, ¢; are the singular vec-
fective method for modern time series analysis. It was used©rs of X, ando; are its singular values, while the SVD anal-
by Broomhead and King (1986) for the first time and comesYSiS 0f X can be written as
from the generalized theory of information. In this study we y _ sxc’,

use the above analysis in two cases: (i) as a time series filter

and (ii) to decompose a time series in its SVD reconstructedvhere § = [s1,s82,...54]), C = [c1,¢2,...c,] and
components which can be used for the detection of the unders = diago, o2, ...0,,]. The singular values are assumed to
lying dynamics. Singular value analysis is applied to the tra-obey the ordering-o2 > ... > 0, > 0 is assumed. It is also
jectory matrix which is constructed by an experimental time known from the SVD theorem that the non-zero eigenvalues

(10)
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of the structure matrix are equal the to non-zero eigenval-

ues of the covariance matrix. This means that’ifwhere

n’ > n) is the number of the non-zero eigenvalues, then
rankXX” = rankXTX = »’. It is obvious that the A 20
dimensional subspace &y spanned by{s;,i = 1,2, ...n"}

is mirrored to the basis vecteor, which can be found as the 10
linear combination of the delay vectors by using the eigen-
vectorss; according to Eq. (8). The complementary subspace ¥
spanned by the s¢t;,i = n’, 2, ...N} is mirrored to the ori-

gin of the embedding spad® according to the same relation —10
(8) i.e. the number of the independent eigenvectgrthat

are sufficient for the description of the underlying dynamics -z
is equal to the number’ of the non-zero singular values

of the trajectory matrix. The same numhercorresponds to

the dimensionality of the subspace containing the attracting
manifold. The trajectory can be described on the new basit

{ci,i = 1,2, ...n} by the trajectory matrix projected on the
basis{c;} given by the producKC of the old trajectory ma- a0
trix X and the matrixC of the eigenvectorgc;}. The new
trajectory matrixXC is described by the relation _10

84 341 {12/07) 00:00 UT to 54 345 (12,/11) 00:00 UT

\..

3
TRRER] FRTRRRTIR] (RRRTTTRTARTRARITR NI ARTRTRRATANTINI

T [T T T T T

a1
o
=
L
||/

.
=
[
[=)

E\D
v N

xXo)r(xc) = =2 (11) £ o

This relation corresponds to the diagonalization of the new
covariance matrix so that the components of the trajectory
are uncorrelated in the bade;}. Also, from the same re- o0
lation (11) we conclude that each eigenvab.,?eis the mean
square projection of the trajectory on the corresponding
Thus, the spectrur{vl?} includes information about the ex- 40 20 o =20 —40
pansion of the trajectory in the directionsas it evolves in Vo
the reconstructed phase space. This phase space, explored
by the trajectory, corresponds — on the average — te-an Fig. 5. Geotail orbit dur.ing the t.ime.interval 94, 341, 00:00 UT to
dimensional ellipsoid for whictic;} give the directions and 4 345, 00:00 UT. During the time interval 341, 00:00 UT to 342,
{o:} the lengths of its principal axes in the subspace spanne&z'oo. UT the spacecraft moves in the dawn magnetosheath while it

. - . remains near the magnetopause and the low latitude boundary layer
by eigenvectorgc; } correspon_dlng to non-zero elgenvalue_s. region of the magnetosphere.
However, when the system is perturbed by external noise
or deterministic external input, then the trajectory begins to
be diffused in directions corresponding to zero eigenvalues.gn reconstruct the original time serie§) by usingn new
where the external perturbation dominates. As we show injme seriesV (1) according to the relation
the following, the replacement of the old trajectory matrix

10

[=1
=
=
=

X with the newXC works as a linear low pass filter for the n
entire trajectory. Moreover, the SVD analysis permits oneX(?) = > Vi, (14)
to reconstruct the original trajectory matrix by using ¥@ =1
matrix as follows where everyV; (¢) is given by the first column of the matrix
n (Xc,-)cl.T. The V;(¢) time series are known as SVD recon-
X= Z(Xc,-)ciT. (12)  structed components (Elsner and Tsonis, 1996). This is a
i=1 kind of n-dimensional spectral analysis of a time series.

The new time serieg; (¢) constitute the reconstructed time
series components of the SVD spectrum, corresponding to
the spectrum of the singular vectors The dependence
%t svD analysis upon the existence of external noise is de-
o scribed by Broomhead and King (1986) for white noise and
X = Z(Xci)ciT’ (13) by Elgner a_nd Tson_|s (1996) forEoIoured noise. In the_case

= of white noise the singular valugs;} of X are shifted uni-
formly according to the relation
which is obtained by summing only with respect to eigenvec-
torse; with non-zero eigenvalues. From the relation (12) we 02 = 52 + (£2), (15)

The part of the trajectory matrix which contains all the
information about the deterministic trajectory, as it can be
extracted by observations, corresponds to the reduced matr
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Fig. 6. From top to bottom(a) A E index measurements with one minute resolut{bithe energetic-38 keV electrons (second pan€b)
the ratio O"/H (third panel) andd) the B, component (fourth panel).

wherego; are the singular values of the unperturbed signalthe coloured noise includes finite dimensional determinism
and(£2) the perturbation of the external noise. Relation (15) while the white noise includes an infinite dimensional sig-
indicates that, in the simple case of white noise the existenc@al. The above difference between white and coloured noise
of a non-zero constant background or noise floor in the specis significant because it makes the SVD analysis suitable for
trum{o} can be used to distinguish the deterministic compo-the discrimination between different dynamical components
nent. In this way we can obtain the deterministic componentof the original signal.

of the observed time series

Z ((Xe))el

oj)noise

(16) 2.5 Application of the SVD analysis in the deterministic
and stochastic Lorenz system

by using only singular values; greater than the noise floor. |n this section we apply the SVD analysis at the Lorenz sys-
In addition, the relation (15) indicates that in the case oftem perturbed by external additive colored noise. The exter-
white noise the perturbation of the singular valugss in- nal colored noise is obtained by the equation

dependent of them. In contrast, as we show in the fol-
lowing, in the case of coloured noise the perturbation of
the singular values is much stronger for the first singular
value {01} than the others. This result may be expected as

M2

X (1) = Z Ci coSwit; + i),
=1

i=1,..,M, (17)
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P (wy) by

Cr = [P(wp) Aw]Y?. (18)

As we have mentioned in Sect. 2.1 these random time series
have a power spectrB(w) of the formw ™ and show low
dimensional fractality, with correlation dimensi@nrelated
through the relatiorD = 2/(a¢ — 1), according to Osborne
and Provenzale (1989). In this section we use two levels of
coloured noise corresponding to the percentages 37% (
0.1) and 185%¢ = 0.5), according to equation

x(t) = xp(t) + exen (1), (19)

where the time series., (r) was constructed to have mean
value of 38 and a standard deviation of 47.

Figure 2a shows the stochastieLorenz time series in-
cluding 37% of external coloured noise. Figure 2b shows the
first SVD componenv; of the stochastic signal described in
Fig. 2a. The SVD reconstructed componeVijsand Vo_15
are shown in Figs. 2c—d. The componéft 15 corresponds
to the sum)_ V;,i = 2 — 15 and approximates the origi-
nal time series (shown in Fig. 2a), while the compongént
approximates the typical profile of a nonstationary coloured
noise. The componerit; includes noticeable information
contained in the original signal according to Fig. 2a. Fig-
ures 2e—h present the corresponding slopes of the correlation
integrals estimated for the time series of Figs. 2a—d. The
slopes shown in Fig. 2e correspond to the original stochas-
tic signal, and the slopes shown in Figs. 2f—h correspond to
the slopes of the SVD componerits, V4 and V,_15 of the
original Lorenz coloured noise stochastic signal. The slopes
of the original stochastic signal (Fig. 2e) reveal a small ten-
dency for scaling and saturation of the scaling exponents at
the valuesD = 3 — 4 in the rangeA Inr = 1 — 3 of the dis-
tancer in the reconstructed phase space. However, this weak
profile of scaling and saturation is entirely destroyed passing
to the V1 component, as seen in Fig. 2f.

A significant profile of scaling and low value saturation
of the slopes reappears passing to the next SVD components
V4 and Vo_15, as we can see in Figs. 2g-h. The correlation
dimension estimated for the time serig€s and Vo_15 was
found to be~ 2.5. This value does not differ significantly
from the correlation dimension of the purely deterministic

Fig. 7. (a)Measurements of the magnetospheric energetic ions with-Orénz system. The results discussed above reveal three sig-
six seconds time resolution during the days 7-8 December (day 3410ificant characteristics concerning the coloured noise:

00:00 UT to day 342, 12:00 UT), 1994. The bursting character of

the energetic ions is obvious and indicates the strong coupling of

the magnetosphere with the solar wirfd) The autocorrelation co-
efficient for the first 1400 units of the lag indicates two different

processes. The first corresponds to an abrupt decay of autocorre-

lation coefficient and the second to a slow decés) Amplitude

distribution for the first and second half of the magnetospheric en-
ergetic ions time series. It is apparent the stationarity of the time

series.

where the phaseg, are randomly distributed in the interval
[0, 27], andC}, are constants related to the power spectrum

(&) The coloured noise causes a significant elevation of the
saturation value of the scaling exponents.

(b) The coloured noise perturbation is absorbed mainly by
the V1 SVD component destroying the scaling and the
low value saturation profile of the slopes corresponding
to theV; SVD component.

(c) The higher SVD componentéVy, V>_15) absorb a
much lower percentage of the noise. The correlation di-
mension of these SVD components does not differ sig-
nificantly from the correlation dimension of the purely

deterministic system.
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Table 1. This Table presents the ratip /o1 estimated for the original Lorenz system, the stochastic (coloured noise) Lorenz system and the
SVD components of the stochastic Lorenz system

Lorenz with coloured noise

o2/o1 e Noise% o3/01 e Noise% oo/01

Lorenz 054 0.1 37 033 05 185 0.04
LorenzVy 068 0.1 37 0.12 0.5 185 0.02
Lorenz-(o_15) 0.63 0.1 37 045 0.5 185 0.41

Table 2. This Table presents the ratie /o1 estimated for the original Lorenz system, the stochastic (white noise) Lorenz system and the
SVD components of the stochastic Lorenz system

Lorenz with white noise

o2/o1 € Noise% op/o01 € Noise% op/01

Lorenz 054 1 7.8 050 5 39 0.50
LorenzVy 068 1 7.8 045 5 39 0.45
Lorenz-(o_15) 063 1 7.8 047 5 39 0.47

The above characteristics reveal a strong difference betweethe decorrelation time of théV,, Vo_15) SVD components
the behaviour of the coloured and white noise as we perturb @mains invariant, passing from weak to strong external per-
dynamical system concerning the correlation dimension. Agurbation.
we have shown elsewhere (Athanasiu and Pavlos, 2001), the
white noise leaves invariant the correlation dimension pass- Figures 4a—b show the singular value spectrum estimated
ing from the original stochastic signal to its SVD compo- for the coloured noise stochastic Lorenz system and its SVD
nents. However, the coloured noise leaves invariant only thecomponentgVy, Vo_15). Figure 4a corresponds to the first
high SVD components. In the following we present resultslevel (e = 0.1) of the coloured noise perturbation and Fig. 4b
concerning the autocorrelation coefficient and the singulartto the second levele = 0.5). As it is concluded by these
value spectrum of the Lorenz system perturbed by externafigures the coloured noise destroys the normal character of
additive coloured noise. Figure 3a shows the autocorrelatiorthe nontrivial singular values for the stochastic signal and
coefficient estimated for the origined = 0) Lorenz system its V3 SVD component, causing the ratio of the second to
and for the Lorenz system perturbed by external colouredirst eigenvaluers/o1 to decrease significantly, passing from
noise corresponding to amplitudés = 0.1,¢ = 0.5). In the purely deterministic to the stochastic signal. However,
the same figure we present the autocorrelation coefficient ofhis effect is not observed for th&_15 SVD component.
the first SVD componenvy of the original stochastic sig- Table 1 presents the ratip/o1 estimated for the original
nal. It is important to notice that there is a clear difference Lorenz system, the stochastic (coloured noise) Lorenz sys-
between the original signal and i¥§ SVD component con- tem and the SVD components of the stochastic Lorenz sys-
cerning the decorrelation time. This characteristic is similartem. For both levels of perturbatiqa = 0.1, 0.5) the ratio
for the coloured and white noise. On the other hand, thedecreases, passing from the purely deterministic system to
behaviour of the coloured noise is different from that of the the corresponding stochastic system andtheomponent
white noise passing from one level of noise to another forof the stochastic system. On the contrary, the ratigo1
both cases of the original signal and It component, i.e. increases, passing from thg to the Vo_15 SVD compo-
in the case of the coloured noise the decorrelation time innent obtaining almost the value ef/01 estimated for the
creases as we increase the amplitude of the external pertupurely deterministic Lorenz system. Table 2 is similar to Ta-
bation for both the original signal and its first SVD compo- ble 1, corresponding to the case of the white noise perturba-
nent V1. This result is in contrast to the behaviour of the tion Lorenz system. This table shows that the ratigo; is
white noise perturbation, as it has been shown in Athanasiwalmost invariant, passing from the purely deterministic signal
and Pavlos (2001). The autocorrelation coefficients for theto the corresponding stochastic signal and the SVD compo-
next SVD componentéVy, Vo_15) of the original stochastic  nents of the second. The above results reveal that as in the
signal are shown in Figs. 3b—c. These figures reveal similacase of the correlation dimension and the autocorrelation co-
behaviour between the colored noise and the white noise, asfficient, the behaviour of the colored noise is strongly dis-
criminated from the white noise and in the case of the singu-
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Fig. 8. (&) The slope of the correlation integral as a function of the radiestimated for embedding = 6, delay timer = 10 — 100 units

of the sampling time and Theiler's parameter= 50, 100. For delay time = 20— 50 we observe the best scalirf§) The same as (a) but
with delayt = 30 andw = 5500, showing that there is no significant change of the sldjgg3he same as (a) but with= 30, w = 500

and a embedding dimensian= 4 — 7. (d) The same as (c) estimated by using the SVD filtering of the original signal for window length
w, w = 50 and independent trajectory matrices for every embedding.

Then if

, ) Jx@ +mt) —x(j +m7)|
2.6 The method of the false nearest neighbours in the esti- >
mation of the dynamical degrees of freedom

lar value spectrum as well.

Rr, (22)

'm

the nearest neighbours at timare declared as false (Abar-

Besides the correlation dimension, the method of false near?@nel et al., 1993). The threshold valfig is estimated to
est neighbours can also give an estimation of the small2€ in the range 16< Rr < 50. According to this criterion,

est value that is appropriate for the embedding dimensiorfS the embedding dimensienincreases tp a characteristic
mo. When the trajectory of the system is reconstructed inValu€mo, the percent of false nearest neighbours may drop
a space of low dimensionality, then it is possible to havel0 zero. If this is actually observed for a time series, then

self-crossings which give rise to false neighbours state veci! Yi€lds a positive indication of the existence of low dimen-
tors. This is gradually improved as the embedding dimensiorsional dynamics underlying the observed signal.

is increased, and for a large enough embedding dimensio
mg false crossings and false neighbours disappearx (gt

be the nearest point to(i) for an embedding dimension.
Then their distance is given by

87 The method of surrogate data

According to the relation (5), the scaling properties of the
correlation integral as — 0 and the saturation of the scal-
ing exponentl(m) — D asm increases are necessary con-
ditions for the existence of low dimensional dynamics un-
derlying the experimental time series. However, it has been
shown that these conditions are not sufficient in order to con-
clude low dimensional dynamics from experimental time se-
ries with broad-band power spectrum, as they can also be sat-
isfied by stochastic systems (Osborne and Provenzale, 1989;

r2(i, j) =
() = x (NP4 A x4 (m— 1)) —x(j + (m— 1712 (20)

Passing from then to m + 1 embedding dimension this
distance takes the form

r2 G, j) =126, )+ [x(i +mr) —x(j+mD)2 (21)
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Fig. 9. (a)Slopes of the correlation integrals estimated for the original signal and its first 30 surrogate data as a funation (@ [fihe
significance of the statistics as a function ofrlny shown in (a)(c, d) The same as (a, b) but SVD analysis was used.

Provenzale et al., 1991). Moreover, according to Theilernonlinear and chaotic dynamics, but its effect can hardly be
(1991), the concept of low correlation dimension (fractal or observed as the process is driven mainly by noise. There-
integer) can be applied to time series in two distinct ways.fore, we focus here on the solution of the first problem, i.e.
The first one indicates the number of degrees of freedom irdetermining whether the magnetospheric ions’ time series is
the underlying dynamics, and the second quantifies the selflinear or nonlinear. This is done by following the method of
affinity or “crinkliness” of the trajectory through the phase “surrogate” data (Theiler et al., 1992a, b).
space. In the first case, the scaling and saturation profile are The method of “surrogate” data includes the generation of
caused by the recurrent character of the reconstructed trajean ensemble of data sets which are consistent to a null hy-
tory, i.e. by uncorrelated in “time” and correlated in “space” pothesis. According to Theiler (1992a), the first type of null
state points. In the second case, they are caused by time cdfiypothesis is the linearly correlated noise which mimics the
related state points that are uncorrelated in space. In order toriginal time series in terms of the autocorrelation function,
discriminate between the two cases, known as dynamic angariance and mean. The second and more general null hy-
geometric low dimensionality, we restrict the sum in Eq. (6) pothesis takes into account that the observed time series may
to pairs(x(i), x(j)) with |i — j| > w, where the Theiler be a nonlinear monotonic static distortion of a stochastic sig-
parameteiw is larger than the decorrelation time of the time nal.
series. Every Gaussian process is linear, while a non-Gaussian
When low dimensionality is persistent as a dynamic process can be linear or nonlinear. An experimental time se-
characteristic after the application of Theiler’s criterion, then ries may show nonlinearity in terms of a non-Gaussian dis-
we have to decide first between linearity and nonlinearitytribution, which may be due to a nonlinear transformation
and second between chaoticity and pure stochasticity. Byf the linear underlying dynamics. In this case, the generated
the term chaoticity we mean the case where the deterministi€nonlinear” surrogate data mimic the original time seniés
component of the process is prevalent and reveals low diin terms of the autocorrelation function and the probability
mensional chaos. For a stochastic process, the deterministiensity functionp (x). It is always possible for a nonperiodic
component may correspond to low dimensionality and evertime series of finite length to be a particular realisation of a
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noise process or of a low-dimensional deterministic process(lpavich et al., 1981; Freeman and Parks, 2000). However,
Therefore, it is a statistical problem to distinguish betweenlow charge state heavy ions are thought to be coming from
a nonlinear deterministic process and a linear stochastic prathe Earth’s ionosphere and accelerated in the magnetotail
cess. For this purpose we use as discriminating statistic éKirsch et al., 1984; Pavlos et al., 1985; Eastman and Chris-
quantity QO derived by a method sensitive to nonlinearity, ton, 1995; Anagnostopoulos et al., 1986, 1998; Sarafopoulos
as the correlation dimension estimation. The discriminat-et al., 1999; Christon et al., 2000). Moreover, it is known
ing statisticQ is calculated for the original and the surrogate that bursts of energetic electrons are caused only by acceler-
data, and the null hypothesis is verified or rejected accordingation in the Earth’s magnetotail (Pavlos et al., 1985; Anag-

to the value of “sigmass nostopoulos et al., 1986; Sarafopoulos et al., 2000). In this
work we study an extendend time series of energetic ions as
S = M’ (23) they were observed at the dawn magnetosheath of the Earth’s
Osur magnetopshere. As we can see in Figs. 5a—b during the days

7-8 December (days 341-342), 1994, the spacecraft GEO-
TAIL moves in the down magnetosheath while it remains
i : : : : : near the magnetopause and the low-latitude boundary layer
original data. For a single time ser s the single . .

9! ing’e 1 @Eobs | IngleQ (LLBL) region of the magnetosphere. Figure 6a shows the

value (Theiler et al., 1992a). . . i )
The significance of the statistics is a dimensionless quan:AE index during the same period. The profile of the

tity, but we follow here the common parlance and report it in index indicates strong magnetopsheric activity which could
ter;ns of the units of “sigmas”. Whens takes values higher cause the acceleration of electrons, protons and low charge

than 2-3, then the probability that the observed time serieftate heavy ions as". Figures 6b—c present energetic elec-

does not belong to the same family with its surrogate data iéron fluxes as well as,Oquxes, Wh_'Ch pbwously were ac-
higher than 0.95-0.99, correspondingly. celerated at the Earth’s magnetotail. Figure 6d showsthe

For testing the second more general null hypothesismagnet'c field measurements during the same period. The

described above we follow Theiler’s algorithm (Theiler, B, component changes continuously from negative to posi-

1992a), as well as Schreiber and Schmitz's algorithmtive values, indicating the magnetic connection of the space-
(Schrei,ber and Schmitz, 1996). Both algorithms Createcraﬂ’s p(_)sition and the Earth’s magnetosphere. The magnetic
stochastic signals which have the same autocorrelation func(EOnneCtlon of the spacecratfi and magnetopshere can be also

tion and amplitude distribution as the original time series. concluded by the existence of energetic electron bursts (see

According to Theiler's algorithm, a white Gaussian noise Fig. 6b). Sarafopoulos et al. have also determined energetic

is first reordered to match the rank of the original time seriesele(:trcmS and proton bursts durlng t.h? same period, and they
(this is to make the original time series Gaussian). Then the%OnCIUOIed their magnetopsheric origin (Sarafopoulos et al.,

whereu,,, andoy,, is the mean and the standard deviation
of O on the surrogate data, apg,, is the mean oD on the

phases of this signal are randomized (to destroy any possiblt Of;?t()t)HeTehne(asre eotpcs'eor\r:ztlc?t?s;trs dng(ljlyr_sn upi)r?;t;g;gyp;t_gzs;
nonlinear structure). Finally, the original signal is reordered getic 1 v uring per

to match the rank of the above constructed coloured noiséhe dawn magnetosheath were produced at the Earth's mag-

(to regain the original amplitude distribution). The derived netqtall. .
shuffled time series is the surrogate time series. Figure 7a shows the measurements of the energetic ions

The algorithm of Theiler was improved by Schreiber and (3§|—é?c-:f3sk§V)_ asththgy w;.\re8 gbservE(; bg th3e 4 fxgg grgaqf
Schmitz by a simple iteration scheme, in order to strengthe uring the days 7-8 December (day o

the ability of the surrogate data to fit more exactly the auto- c; ?r?y 242&],12:00 UTt)’ 1?]94' atTt_E? (iic_awn magneltosTeath
correlation function and the power spectrum of the original0 € tarth's magnetosphere. IS Tigure reveais strong

time series. The procedure starts with a white noise signal, iﬁamd continuously repeatable bursts of energetic ions during

which the Fourier amplitudes are replaced by the correspond'—v?"3 h. As it was explained before, it is reasonable to sup-

ing amplitudes of the original data. The rank order of the pose that these particles were accelerated in the inner mag-

derived stochastic signal is used to reorder the original timenetosphere during periods with a strong coupling of the mag-

series. By doing this the matching of amplitude distribution netospheric system and the solar wind, simultaneously with

is succeeded, but the matching of power spectrum achieve tr;)ngn::)ur:ftsf ?rieige(i::]rgn; a_lrnhderO:\sr Wﬁ” ar?l? clear en-d
in the first step is altered. Therefore, the process obtaine i\tct?weed n?:\mics of thg .eneree?i:i?)’ns (;ﬁrroretﬁzi)iﬁ?esgal
in the two steps is repeated several times until the change i y 9

the matching of power spectrum is sufficiently small. In the magnetospheric dynamics, similar to tHe index during

analysis of our data the improved algorithm of Schreiber anopenods W'th a strong coupling of the magnetosphgre aqd
Schmitz is used. the solar wind (Pavlos et al., 1999c). The energetic parti-

cle differential fluxes are provided via the Energetic Parti-
cle and lon Composition (EPIC) instrument of the GEOTAIL

3 Data analysis and results spacecraft,and essentially remained close to the ecliptic plane
(Williams et al., 1994). The sampling time for the energetic

It is known that protons or heavy ions a§Ocould be ac- ions analyzed here was 6 s.

celerated by Fermi acceleration at the Earth’s bow shock The time series shown in Fig. 7a contaiNg = 20000
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estimation we used = 30 andR7 = 10. (b) The significance of the statistics for the surrogate data.
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Fig. 11. (a)The spectra of singular values, with parametem = 10, 15, 20, estimated for the energetic ions time ser{p} The same with
(a) but discarding the first singular value.

data points. Figures 7b and c present the autocorrelatioprocess) cannot be explained solely as a consequence of a
function and the amplitude distribution of the energetic ions’ chaotic process, as it is possible to be caused by a static
time series. The first figure reveals abrupt decorrelation ofnonlinear distortion of a linear stochastic system. The sta-
the signal during the first 150-200 units of lag time, which tionarity of the time series is tested by estimating the ampli-
implies a broad-band spectrum. The second figure revealtude distributions for the first and second half of the data set
that the distribution of the amplitudes is non-Gaussian, whichshown in Fig. 7a. In the same figure, except for the stationar-
under certain conditions (especially when the signal is er-ity of energetic ions time series, the non- Gaussian character
godic) can lead to the possibility of nonlinearity existing of the signal is also revealed. This indicates the possibil-
in the signal. The nonlinearity can be dynamical or static,ity for nonlinearity in the signal and the underlying physical
something which will be clarified in the following by the mechanism.

method of surrogate data. The random character of the ener-

getic ions’ time series is revealed by the decaying profile 0f3.1 Correlation dimension

the autocorrelation coefficient showing an abrupt decay dur-

ing the first 100 units of the lag time and a slow, long decayFigyre 8a shows the slopes of the correlation integral esti-
afterwards. The general profile of the autocorrelation coef-mated for the embedding dimension= 6, different delay
ficient indicates two different physical processes: one correimes () and different values of Theiler's parameten).
sponding to short decorrelation time (100 lags) and the othefor delays of 10-50 lags the slopes reveal a satisfactory scal-
corresponding to long decorrelation time (1000 lags). Theing at low values of distance r in the reconstructed phase
first process is assumed to be related to a low dimensiona%ﬁgace. This result indicates the delay value time 30— 40

chaotic process, while the second corresponds to a colouregs a suitable value for a reliable reconstruction of the phase
noise mechanism. Of course the abrupt decay (first kind okpace trajectory and the trajectory matix
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Fig. 12. (a)The magnetospheric energetic ions time series during the days 7-8 Decembe(t)9B4e time series corresponding to the
V, component of the SVD analysis of the signal shown in (&). The time series corresponding to the SVD reconstructed component
Vo_10=>_V;, (i =2—10), of the signal shown in (a)e, f, g) The autocorrelation coefficient estimated for the signals shown in (a),(b).(c)
respectively.

Figure 8b is similar to Fig. 8a but for different values of tion integrals upon external perturbation has been described
Theiler’s parametew. This figure indicates that the slope of in the previous section, where it has been shown that the ex-
the correlation integral remain almost invariant for> 500. ternal noise perturbation destroys the slopes at small values
Figure 8c shows the slopes, of the correlation integral forof the distancér) and leaves them invariant at higher values.
different embedding dimensionig: = 4 — 7). Itreveals a  Also, it has been shown that the coloured noise can raise the
tendency for low value saturation of the slogés~ 3 — 4), saturation value of the slopes by about 1-2 units. Contrary,
at the scaling region\/n(r) = 2.5 — 3.5. However, the exis- the white noise leaves invariant the saturation value of the
tence of external noise has destroyed substantially the scalinglopes. In order to exclude the perturbation of the slopes
and the saturation profile of the slopes at smaller values of theaused by external high dimensional stochasticity related to
distance(r). The dependence of the slopes of the correla-white or coloured noise, we use the new trajectory matfix
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obtained by the SVD method and describe the trajectory orstrongly the concepts of low dimensionality and dynamical

the basis of the singular vectofs; ), as it was presented in nonlinearity of the original signal excluding the hypothesis

Sect. 2.4. of the linear stochastic signal, which can mimic the charac-
Figure 8d presents the slopes estimated by using the neteristics of the observed energetic ions’ signal after a static

trajectory matrixXC. We can now notice that there is clear and nonlinear distortion.

improvement of the scaling and saturation profiles. The ob-

served saturation valub ~ 2.5 of the slopes indicates the 3-3 Singular value spectrum

low dimensionality of the physical process underlying the Fi 11 h lized f the sinaul
energetic ions’ time series. Although the low value satura- lgure 11a presents the normalized spectrum of the singular
values estimated for embedding= 10 — 20. For the esti-

tion of the slopes indicates the existence of dynamical low™ “""  the sinaul I H foll dth
dimensionality in the underlying process, it is not helpful, mation of the singular value spectrum we have followed the

however, in deciding upon stochasticity or chaoticity of the methods that appeared in the papers of Broomhead and King

signal and the underlying dynamics. In order to exclude the(1986)’ Albano et al. (1988), where they used a fixed window

linear stochasticity of the signal we use the method of surro-Iength @w. According to Albano et al., the lower and upper

gate data (described in Sect. 2.7). limits fordrut, a[)e based on th4e aut(;]correlqnot?] funct|0r|1 ?nd are
Figure 9a shows the slopes of the surrogate data estimatezfn?g (()jfa?ineg a: ih; tirrlrﬁe?vh;(’a \;\rgee;ifgéirre?aggg?uicl:?ign is
for the embedding dimension = 6 and it is compared with

: . . . 1/e. Here we use a fixed window length = 600, while the
the corresponding slopes of the original time series. For the elay time(z) and the embedding dimensienare variable,

statistics we used forty independent surrogate signals. Thaccordin to the relati — As we can see in Fig. 114
significance of the statistics is shown in Fig. 9b. At the scal- rding on, = mt. 9- '
the first singular value1 is much larger than the next ones

ing regionAln(r) = 1.0 — 3.0 of the distancdr) and the o X . )
significance takes values higher than two sigmas. This indiZi>! = 2, which are pressgd to the noise floor. This charac-
cates that the energetic ions’ time series does not belong tBe”St'C was also observed in the case of the Lorenz stochastic

the same family of the surrogate data and this happens Witﬁystem, related to coloured noise perturbation and described

probability greater than 0.95, i.e. we can reject the null hy—!n Sefcttr.]2.5. As V\f[.e S.hOW Idn the H.EXt S%Estehctlon;s, thed5|m|_lar-
pothesis with a confidence greater than 95%. Figures 9c an&y ot the energetic 1ons dynamics wi € coloured noise

d are similar to Figs. 9a and b and correspond to the S|0pe§:0ChaSt|C|ty is a global characteristic. This indicates fur-

obtained by the SVD trajectory matrkC. Now the signifi- er that the dynamical process underlying the energetic ion
cance §) stays at values — 3 — 5 along the entire scaling time series must be perturbed by an external coloured noise

region (Fig. 9d). This significance improves the confidenceP 0¢€SS: Figure 11b shows the spectrum of singular values

of discrimination between the original and the surrogate dataoular valueor. we can obtain a normal spectrum with 67
to the value greater than 99%. Thus, the results discusse@t'&f Valueou, ! Sp : L
above support the concept of the dynamic nonlinearity andﬁpntnwal singular values above the noise floor. This result is

low dimensional chaos of the energetic ions’ time series, eX_S|mllar to the result obtained by the method of false nearest

cluding with high confidence the case of linear stochastic-ne'ghbours.and indicates 6-7 dynamlcal degrees of frgedom
ity, which can mimic dynamical nonlinearity and low dimen- corresponding to the magnetospheric process underlying the

: . . . . energetic ions’ time series.
sional chaos after a static nonlinear distortion. 9

i, 1 > 2. This figure reveals that by excluding the first sin-

. 3.4 SVD spectrum of reconstructed components
3.2 False nearest neighbours P P

) ] ) In order to further understand the dynamical process under-
The ratio of the false to total neighbours was estimated aClying the energetic ions’ time series, we study the spectrum
cording to the theoretical concepts presented in Sect. 2.6 fof¢ the SVD reconstructed components according to the the-
the energetic ions’ time series, as well as for the two sets Ofyetical concepts and results discussed in Sects. 2.4 and 2.5.
surrogate data. Figure 10a shows these ratios for the 'O”S#igure 12a—c show the time series corresponding to the ob-
signal and the first ten series of surrogate data as a functioggyed energetic ions time series (Fig. 7a) anditsV>_10

of the embedding dimension. For the statistical comparisong\/p components. The componént_1ois computed by the
we have also used 40 independent signals of surrogate datﬁ)llowing sum

In both cases the ratio of false to total neighbours approaches

zero form > 6—7, indicating that there are 6 or 7 dynamical 1
degrees of freedom of the underlying process. The :signifi—VZ—10 = ZOV"
cance of the statistical tests is presented in Fig. 10b as a func- i=2
tion of the embedding dimensiom]. The levels of signifi- of the V;,i = 2 — 10 SVD components. Th&; SVD
cance are found to h& = 5 — 10 sigmas for the embedding component shown in Fig. 12b describes the low variation of
dimensiornvn = 2 — 5. This result indicates a strong possi- the original time series, while the higher compon&at 19

bility of discrimination between the original signal and the (shown in Fig. 12c¢) includes the fast variation of the original
surrogate data, i.e. the null hypothesis can be rejected witlsignal. Figure 12e—g presents the corresponding autocorrela-
a confidence greater than 99%. These results also suppatibns coefficients of the time series shown in Fig. 12a—c. The

(24)
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Fig. 13. (a)The slopes of the correlation integrals estimated forth&VD reconstructed component of the energetic ions time series for
m =4 — 8,7 = 70 and Theiler's parameter = 100. (b) The same as (a) but for the SVD reconstructed compovignig = > V;, (i =

2 — 10) with parameters: = 4— 9, t = 7, w = 500.(c) The same as (a) but for th§ SVD reconstructed component and its surrogate data
with parameters: = 6, ¢t = 70, w = 100. (d) The same as (b) but for tH&_19 SVD reconstructed component and its surrogate data with
parameterg: = 6, 7 = 70, w = 50.
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Fig. 14. (a, b)The spectra of singular values, with parametem = 10, 15, 20, estimated for the SVD reconstructed compon&ptd>_1g
of the magnetospheric energetic ions time series.
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autocorrelation coefficient of th&, component indicates a mensional chaos can be used for understanding the singular
slow decay profile, while the autocorrelation coefficient of spectra of thé/1, V>_19 SVD components of the energetic
the V,_19 SVD component shows a fast decay profile. Theseions signal, shown in Fig. 14a—b. Figure 14a presents the
characteristics could be explained by a linear stochastic prosingular value spectrum of thg component of the ions’
cess related to th&; component and a nonlinear chaotic time series and Fig. 14b presents the same spectrum for the
process underlying the&,_10 SVD component in accordance V,_10 SVD component of the ions signal. The singular spec-
with the results discussed in Sect. 2.5. trum of theV; SVD component of the ions’ signal is similar
The above hypothesis is also supported by the resultso the singular spectrum of the original time series shown
shown in Fig. 13. Figure 13a presents the slopes of theén Fig. 11a, i.e. there is strong asymmetry between the first
correlation integrals estimated for the SVD reconstructed and the other singular values, i > 2 which are pressed to
component of the energetic ions’ time series. This figure re-the noise floor. Contrary to this, the spectrum of #3e 19
veals that thé’; component does not include any low dimen- component is normal, revealing 4—6 nontrivial singular val-
sional characteristic, as there is no satisfactory scaling andies above the noise background. This analysis can be used
low value saturation profile of the slopes. Figure 13c present$o support the central concept described previously, i.e. the
the slopes of the correlation integrals estimated for the surro¥; SVD component of the ions’ time series includes mainly
gate data of thé; component for the embedding dimension the external coloured noise component, whileihe;o SVD
m = 6. This figure shows that there is no significant differ- component includes the internal dynamics of the underlying
ence between the original sign& and the surrogate data. magnetospheric process.
As the surrogate data are produced by a nonlinear distortion
of a linear noise, we can conclude the linear character of the
V1 signal, while the high dimensionality of th€, compo- 4 Summary and discussion
nent was concluded from Fig. 13a. Based on these results
we can support the concept that tie SVD component of  In this work we have estimated the correlation dimension,
the ions’ time series is basically the manifestation of an ex-the false neighbours and the singular value spectrum for the
ternal high dimensional coloured noise. This concept is alsonagnetospheric energetic ions measured at the distant mag-
supported strongly by the similarity which can be observednetotail. In addition, the null hypothesis is tested in order to
between the slopes of the iong; SVD component and the exclude the case where the original time series arises from
V1 SVD component of the Lorenz system perturbed by ana linear stochastic process, but the observed time series may
external additive coloured noise (see Sect. 2.5). be a nonlinear distortion of the underlying linear time series
On the contrary, théd»_190 SVD component of the ions (Theiler et al., 1992a, b). For the application of the test of
clearly reveals low dimensionality and nonlinear characteris-the null hypothesis we have used surrogate data constructed
tics. Figure 13b and d, are similar to Fig. 13a and ¢ includingaccording to Schreiber’s algorithm, to mimic the amplitude
the slopes of thé/’_19 component and its surrogate data. distribution and the power spectrum of the magnetospheric
The scaling and low dimensional profile of the slopes of thesignal. The significance of the discriminating statistics was
Va_10 component are clearly indicated by Fig. 13b. The non-found to be higher than two sigmas, permitting us to reject
linearly of the V>_10 signal is supported by Fig. 13d, as its the null hypothesis with a confidence greater than 95%.
surrogate data are clearly discriminated by the original sig- The correlation dimension was found to b8 — 4, while
nal Vo_10. The behaviour of the iond,_19 SVD component  the false neighbours and the singular value spectrum have
corresponds to the behavior of tie_19 component of the  shown~6 — 7 independent dynamical degrees of freedom.
coloured noise stochastic Lorenz system (see Fig. 2h). Thighis result is in accordance with the value of the correlation
further strengthens the supposition about the existence of adimension 0,), as the correlation dimension and the maxi-
external high dimensional coloured noise component in themum numbexn) of the degrees of freedom are connected by
magnetospheric dynamical process underlying the energetithe relatiorn < 2D, 4 1.
ions’ system. Moreover, the SVD analysis has revealed two different
As we have shown in Sect. 2.5, the singular value specphysical processes related to the magnetospheric dynamics
trum of theV,_19 component of the Lorenz coloured noise concluded by the observed energetic ions’ signal. The first
stochastic system is similar to the singular value spectrum oprocess corresponds to a stochastic external component, as
the original purely deterministic Lorenz system. In opposite was indicated by the first SVD component. In this case the
contrast, the singular value spectrum of thecomponent test of the null hypothesis has shown that there is no sig-
of the Lorenz coloured noise stochastic system is similar tonificant difference between the surrogate data and the first
the spectrum of the original Lorenz stochastic system, i.e. th&sVD component. The second process corresponds to a low
V1 component absorbs the main part of the external colouredlimensional chaotic component, as was indicated by the re-
noise perturbation, while the SVD componéht jgremains  constructed time series obtained by adding the next SVD
almost unperturbed by the external coloured noise compoeomponents. In this case the test of the null hypothesis has
nent, conserving invariant the characteristics of the originalshown a strong difference in the discrimination of the sur-
(unperturbed) purely deterministic system. The above charrogate data and the reconstructed time series. In addition,
acteristics of coloured noise stochasticity related to low di-the Lorenz system perturbed by external coloured noise has
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shown a strong similarity with the the ion time series accord-Christon, S. P., Desai, M. I., Eastman, T. E., Gloeckler, G.,
ing to the above chaotic analysis. In particular, the behaviour Kokubun, S., Lui, A. T. Y., McEntire, R. W., Roelof, E. C., and
of the SVD components of the stochastic Lorenz signal and Williams, D. J.: Low-chargestate heavy ions upstream of Earth’s
the magnetospheric ions signal were found to be quite simi- Pow shock and sunward flux of ionospheri¢ O N1, and 02

lar for the first component and the reconstructed signal. The 'ons: Geotail Observations, Geophys. Res. Lett., 27, 2433-2436,

. . . 2000
comparison of Lorenz’s results to those of the ions’ signal _. ) ) L
su ports the above concent of two independent undeg in Ding, M., Grebogi, C., Ott, E., Sauer, T., and York, J. A.: Estimating
PP P P ying correlation dimension from a chaotic time series: when does a

physical processes underlying the observeq ions signal. The plateau onset occur?, Physica D 69, 404-424, 1993.
first process may be related to the stochastic dynamics of th@,siman, T. E. and Christon, S.: lon composition and transport
solar wind system and the second one to the internal low- near the Earth’s magnetopause, in: Geophysical monograph 90,
dimensional chaotic dynamics of the magnetospheric system. Physics of the Magnetopause, edited by Song, P., Sonnerup,
Finally, the above results are in complete agreement with the B. U. O., and Thomsen, M. F., 131-137, 1995.
previous results obtained by the chaotic analysis of magneElsner, J. B. and Tsonis, A. A.: Singular spectrum analysis, a new
tosphericA E index. tool in time series analysis, Plenum Press, New York, 1996.
Farmer, D. J. and Sidorowich, J. J.: Predicting chaotic time series,
Phys. Rev. Lett. 59, 845-848, 1987.
Freeman, T. J. and Parks, G. K.: Fermi acceleration of suprathermal
solar wind ions, J. Geophys. Res., 105, 15 715-15 727, 2000.
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