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Abstract. In the first part of the paper we study the geo-
metrical characteristics of the magnetospheric ions’ time se-
ries in the reconstructed phase space by using the SVD ex-
tended chaotic analysis, and we test the strong null hypothe-
sis supposing that the ions’ time series is caused by a linear
stochastic process perturbed by a static nonlinear distortion.
The SVD reconstructed spectrum of the ions’ signal reveals
a strong component of high dimensional, external coloured
noise, as well as an internal low dimensional nonlinear de-
terministic component. Also, the stochastic Lorenz system
produced by coloured noise perturbation of the deterministic
Lorenz system was used as an archetype model in compari-
son with the dynamics of the magnetrospheric ions.

Key words. Magnetospheric physics (energetic particles) –
Radio science (nonlinear phenomena)

1 Introduction

Many theoretical and experimental studies support the hy-
pothesis that the magnetosphere can be described as a low
dimensional chaotic system. Theoretically, it was intro-
duced by Pavlos (1988, 1994), Baker et al. (1990), Klimas
et al. (1991, 1992) and V̈orös (1991). Experimentally, it was
introduced by using the chaotic analysis of magnetospheric
time series as has been discussed in Vassiliadis et al. (1990,
1992), Shan et al. (1991), Roberts et al. (1991), Prichard and
Price (1992), Pavlos et al. (1992a, 1992b, 1994).

Parallel to these studies a fruitful criticism has been devel-
oped about the supposition of magnetospheric chaos, espe-
cially in relation to its experimental evidence (Prichard and
Price, 1992, 1993; Price and Prichard, 1993; Price et al.,
1994; Prichard, 1995), based on the strong null hypotheses
for stochasticity of Theiler (Theiler et al., 1992a, b). The
above criticism includes the following assertions:
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(a) The correlation dimension of theAE index time series
cannot be distinguished from that of a stochastic signal
with the same power spectrum and amplitude distribu-
tion as the original data.

(b) There is no evidence for the existence of low dimen-
sionality according to their estimate of correlation di-
mension obtained by using Takens’ method.

(c) There is some evidence for nonlinearity in theAE index
time series. It is not clear whether the nonlinearity of the
AE index is the result of the intrinsic dynamics of the
magnetosphere or the result of the nonlinearity in the
solar wind.

(d) Because the magnetosphere is largely controlled by
the solar wind, this alone should provide evidence
against the existence of a strange attractor in theAE

index, as the magnetosphere is a randomly driven, non-
autonomous system.

(e) There is no evidence for low dimensionality of theAE

index and no evidence that theAE index can be de-
scribed by a low dimensional strange attractor.

In a recent series of papers, an extended chaotic analysis has
been developed by Pavlos et al. (1999a, b, c), Athanasiu and
Pavlos (2001), in which convincing answers to the above crit-
icism against the existence of internal low dimensional and
chaotic magnetospheric dynamics have been given. Accord-
ing to these papers the magnetospheric chaos hypothesis is
strongly supported by studying the geometrical and dynami-
cal characteristics of the magnetospheric time series and their
corresponding nonlinear surrogate data. In these studies a
more effective method for constructing surrogate data was
used which was developed by Schreiber and Schmitz (1996)
and Schreiber (1998). Also in the last study by Pavlos et
al. (1999c), the results of the chaotic analysis of the mag-
netospheric time series are compared with corresponding re-
sults obtained by analysing different types of stochastic and
deterministic input-output systems. In the same study the
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                                 Figure 1 Fig. 1. Power spectrum of the full magnetosphere energetic ions

time series.

spectrum of the SVD reconstructed components of an ex-
perimental time series was used as a tool for discriminating
between directly external driven and storage-release magne-
tospheric processes. Athanasiu and Pavlos (2001) extended
this concept of the SVD spectrum analysis to the magneto-
sphericAE index time series and concluded the existence
of an external, strong, high dimensional, coloured compo-
nent in the magnetosphericAE index, which can be discrim-
inated by including a low dimensional magnetospheric com-
ponent. Similar results supporting the low dimensional mag-
netospheric chaos were found by Goode et al. (2001) using
AL index data. For a review of studies concerning magneto-
spheric chaos and nonlinear dynamics applied to the Earth’s
magnetosphere, refer to Klimas et al. (1996).

In this work the chaotic analysis algorithm is applied for
the study of a new magnetospheric time series corresponding
to energetic ions. Some evidence for the low dimensional
chaotic character of this time series was given by Pavlos
et al. (1999c). Moreover, we extend the study of energetic
ions time series by examining its geometrical and dynami-
cal characteristics. In Sect. 2 we present some theoretical
concepts and results concerning the background of chaotic
analysis, including the embedding theory, and the method of
SVD analysis. In Sect. 3 we present the results of the chaotic
analysis for the energetic ions’ time series. Finally, in Sect. 4
we summarise and discuss the conclusions of this paper.

2 Theoretical framework

The main purpose of time series analysis is to extract signifi-
cant information for the underlying dynamics of the observed
signal, as well as to develop effective methods for modelling
and prediction. Classical time series analysis confronts these
problems by using linear or nonlinear input-output methods
(Priestley, 1988). On the other hand, the modern analysis
of a time series,known as chaotic analysis includes: (a) es-
timation of the geometrical and dynamical characteristics of

the trajectory of the system in its phase space (Pavlos et al.,
1999a, b; Abarbanel et al., 1993; Grassberger and Procac-
cia, 1983; Tsonis, 1992); (b) testing techniques for the dis-
crimination of low dimensional, nonlinear determinism and
linear stochastic processes (Provenzale et al., 1992; Theiler,
1991; Theiler et al., 1992a, b, 1993); (c) forecasting algo-
rithms (Casdagli et al., 1991; Farmer and Sidorowich, 1987;
Weigend and Gershenfeld, 1994). The above methods con-
stitute the kernel of the chaotic analysis algorithm. This al-
gorithm has been enriched recently by new results concern-
ing the application of chaotic analysis in known stochastic
systems and input-output systems (Argyris et al., 1998a, b;
Pavlos et al., 1999a, b, c), as well as by using the SVD anal-
ysis for calculating the spectrum of SVD reconstructed com-
ponents of an experimental time series (Elsner and Tsonis,
1996; Pavlos et al., 1999c; Athanasiu and Pavlos, 2001).

In the following we summarize the main points of the al-
gorithm concerning the chaotic analysis of the experimental
signals, which will be used in Sect. 3 for the analysis of the
energetic particle signal.

2.1 Classical analysis of time series

The classical theory of time series includes the analysis ei-
ther in the time or in the frequency domains (Tong, 1990;
Priestley 1988). Both domains are related by the Wiener-
Khintchine theorem according to which if the autocorrela-
tion function of the signal,C(t), sufficiently decays rapidly
in time, then the power spectrum is equal to the Fourier trans-
form of the autocorrelation function and is given by

P(ω) =

∫
∞

−∞

C(τ)e−iωτdτ. (1)

In many cases the power spectra of experimental time series
approximately follow a power law of the formP(ω) ∼ ω−α.
In Fig. 1 the power spectrum of the energetic ions’ time se-
ries is presented where it can be seen that the exponenta

takes values in the range (1, 3). In general, with a stochas-
tic processx(t), with spectrum density proportional toω−α,
it is possible to correspond to a self-affine fractal Brownian
motion (fBm), withH = (α − 1)/2 and fractal dimension
D = 1/H (Osborne and Provenzale, 1989). Because of this,
as we show in Sect. 2.7, the Grassberger and Procaccia algo-
rithm cannot distinguish between the deterministic chaotic
dynamics and a stochastic fractal system (coloured noise),
where small space scales are related to small time scales. It
follows from Eq. (1) that when the power spectrum obeys a
power law, then the autocorrelation function decays as the
lag timeτ increases. These characteristics can be caused by
linear-nonlinear stochastic dynamical systems or by low di-
mensional chaotic dynamical system. Also, the classical time
series analysis cannot discriminate between these two cases,
while the chaotic analysis, as discussed in the following, can
discriminate with high confidence between linear stochastic-
ity and low dimensional chaos.



G. P. Pavlos et al.: Geometrical characteristics of magnetospheric energetic ion time series 1977
 
 
 

0 1000 2000 3000 4000 5000
t

-30

-20

-10

0

10

20

30

X
(t)

Lorenz                       parameter  (e = 0.1) 
(a)

 
 

0 5000 10000 15000 20000 25000 30000 35000
t

-15

-10

-5

0

5

10

15

20

X
(t)

Lorenz- V1              parameter  (e = 0.1) 
(b)

 
 

0 1000 2000 3000 4000 5000
t

-15

-10

-5

0

5

10

15

X
(t)

Lorenz- V4           parameter  (e = 0.1) 

(c)

 
 

0 5000 10000 15000
t

-40

-20

0

20

40

X
(t)

Lorenz-(V2-15)            parameter  (e = 0.1) 
(d)

 
 
 
 
 

 
 

-2 -1 0 1 2 3 4
Ln(r)

0

1

2

3

4

5

6

7

8

9

10

S
lo

pe
s

Lorenz                      parameter  (e = 0.1)

τ =40
m = 5,6,7,8
w = 500

(e)

 
 

-2 -1 0 1 2 3 4
Ln(r)

0

1

2

3

4

5

6

7

8

9

10

S
lo

pe
s

Lorenz-V1                     parameter ( e = 0.1)

τ =60
m = 5,6,7,8
w = 500

(f)

 
 

-3 -2 -1 0 1 2 3
Ln(r)

0

1

2

3

4

5

6

7

8

9

10

S
lo

pe
s

Lorenz-V4                      parameter (e = 0.1)

τ=10
m = 5,6,7,8
w = 100

(g)

 
 

-2 -1 0 1 2 3
Ln(r)

0

1

2

3

4

5

6

7

8

9

10

S
lo

pe
s

Lorenz-(V2-15)              parameter (e = 0.1)

τ =10
m = 5,6,7,8
w = 100

(h)

 
 
 
 

Figure    2 Fig. 2. (a)–(d)The stochastic Lorenz signal corresponding to the coloured noise perturbation 37%(e = 0.1) and its SVD reconstructed
componentsV1, V4, V2−15. The last signalV2−15 corresponds to the sum

∑
Vi , i = 2 − 15. (e)–(h)The slopes of the correlation integrals

estimated for the signals shown in Fig. 2a–d correspondingly, with embeddingm = 5 − 8 andw = 100.

2.2 Embedding theory and phase-space reconstruction

The Earth’s magnetosphere is a system of magnetized
plasma, which microscopically is an infinite dimensional
system, the dynamics of which is mirrored in the ground
measuredAE index or in the energetic particles’ burst ob-
served by spacecraft in situ in the magnetosphere or in the
interplanetary space (Pavlos et al., 1999c). Some kind of

“self-organization” may give rise to the system evolution on
a low dimensional manifoldM of dimensiond. This means
that the magnetosphere can be described macroscopically by
a low dimensional dynamical system ofn macroscopic de-
grees of freedom withn ≥ d. For linear systems, “self-
organization” is more an externally driven process described
by the external parameters of the system. For nonlinear and
dissipative systems, however, it is possible that the system
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Fig. 3. (a) The autocorrelation coefficients of the deterministic
x(t) Lorenz signal, of the stochasticx(t) Lorenz signal and itsV1
SVD component corresponding to the levelse = 0.1 (37%) and
e = 0.5 (185%) of the external additive coloured noise perturbation.
(b) The autocorrelation coefficients of theV2−15 SVD component
of the stochasticx(t) Lorenz signal corresponding to the two levels
e = 0.1 (37%) ande = 0.5 (185%) of the external additive coloured
noise perturbation.(c) The same with Fig. 3b but for theV4 SVD
component.

evolves by its internal dynamics in such a way that the cor-
responding phase space flow contracts on sets of lower di-
mensions which are called attractors. The embedding theory
permits one to study the dynamical characteristics of a phys-
ical system by using experimental observations in the form
of time series (Takens, 1981; Broomhead and King, 1986).
Let x(t) = f (t)(x(0)) denote the dynamical flow underly-
ing an experimental time seriesx(ti) = h(x(ti)), whereh

describes the measurement function. When there is a noisy
componentw(ti) then the observed time series must be given
by x(ti) = h(x(ti), w(ti)). On the other hand, Takens (1981)
showed that for autonomous and purely deterministic sys-
tems, the delay reconstruction map8, which maps the states
x into m-dimensional delay vectors

8(x) = [h(x), h(f τ (x)), h(f 2τ (x)), ..., h(f (m−1)τ (x))] (2)

is an embedding whenm ≥ 2n+1, wheren is the dimension
of the manifoldM of the phase space in which evolves the
dynamics of the system. This means that interesting geomet-
rical and dynamical characteristics of the underlying dynam-
ics in the original phase space are preserved invariably in the
reconstructed space as well.

Let Xr = 8(t)(X) be the reconstructed phase space and
xr(ti) = 8(x(ti)) the reconstructed trajectory for the em-
bedding8. Then the dynamics evolved in the original phase
space is topologically equivalent to its mirror dynamical flow
in the reconstructed phase spaceXr according to

f t
r (xr) = 8(x) ◦ f t (x) ◦ 8−1(xr). (3)

In other words, the embedding8 is a diffeomorphism which
takes the orbitsf t (xr) of the original phase space to the
orbits in the reconstructed phase in such a way as to pre-
serve their orientation and other topological characteristics
as eigenvalues, Lyapunov exponents or dimensions of the at-
tractors. According to the above theory, in the reconstructed
phase space we can estimate geometrical characteristics as
dimensions, which correspond to the degrees of freedom of
the underlying dynamics of the experimental time series, as
well as dynamical characteristics as Lyapunov exponents,
mutual information and predictors (Pavlos et al., 1999a, b).
Moreover, it is shown elsewhere that the method of recon-
structed phase space conserves its significance even when the
observed signal is derived by a stochastic process (Argyris et
al., 1998; Pavlos et al., 1999c).

2.3 Correlation dimension

The theoretical concepts described above permit us to use
experimental time series in order to extract useful geomet-
ric characteristics, which provide information about the un-
derlying dynamics. Such a characteristic is the correlation
dimensionD, defined as

D = lim
r→0

d[ln C(r)]

d[ln(r)]
, (4)

whereC(r) is the so-called correlation integral for a radius
r in the reconstructed phase space. When an attracting set
exists, thenC(r) reveals a scaling profile

C(r) ∼ rd for r → 0. (5)

The correlation integral depends on the embedding dimen-
sionm of the reconstructed phase space and is given by the
following relation

C(r, m) =
2

N(N − 1)

N∑
i=1

N∑
j=i+1

2(r− ‖ x(i) − x(j) ‖), (6)
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Figure   4 Fig. 4. (a, b)The spectra of the singular valuesσi , i = 1− 15 corresponding to the purely deterministicx(t) Lorenz signal, to the stochastic
x(t) Lorenz signal and itsV1, V2−15 SVD components estimated for the levelse = 0.1 (37%) ande = 0.5 (39%) of the external noise
perturbation.

where2(a) = 1 if a > 0, 2(a0) = 0 if a ≤ 1, andN is
the length of the time series. The scaling exponentd(m) in-
creases as we increase the embedding dimensionm. When
the time series is related to a low dimensional dynamical
system thend(m) saturates at a final valueD for a suffi-
ciently large embedding dimensionm0. Theoretically, the
valuem0 is the smallest integer larger thanD, according to
Ding et al. (1993), but in practicem0 may attain larger values
(Kugiumtzis, 1996), i.e. is an appropriate embedding may re-
quire a largerm than the smallest integer larger thanD.

For periodic attractors the correlation dimensionD be-
comes equal to the topological dimensiond of the manifold
M, which includes the attractor. Usually for a strange attrac-
tor, D obtains a fractal value.

When the slopesd(m) of the correlation integrals reveal
a plateau at low values ofr and the plateau converges for
increasingm, then this is strong evidence for low dimension-
ality of the underlying dynamics for the observed signal. The
stochastic component behaving as noise in the experimental
time series, destroys the plateau and the saturation profile at
low values of the radiusr, and makes the derivation of reli-
able dimension estimates difficult (Pavlos et al., 1999c).

2.4 Singular value analysis (SVD) and SVD reconstructed
components of the original time series

Singular value analysis has been proven to be a strong and ef-
fective method for modern time series analysis. It was used
by Broomhead and King (1986) for the first time and comes
from the generalized theory of information. In this study we
use the above analysis in two cases: (i) as a time series filter
and (ii) to decompose a time series in its SVD reconstructed
components which can be used for the detection of the under-
lying dynamics. Singular value analysis is applied to the tra-
jectory matrix which is constructed by an experimental time

series as follows:

X =


x(t1), (t1 + τ), ... x(t1 + (n − 1)τ )

x(t2), x(t2 + τ), ... x(t2 + (n − 1)τ )

. . ... .

x(tN ), x(tN + τ), ... x(tN + (n − 1)τ )

 =


xT

1
xT

2
.

xT
N

 , (7)

wherex(ti) is the observed time series andt is the delay
time for the phase space reconstruction. The rows of the tra-
jectory matrix constitute the state vectorsxT

i on the recon-
structed trajectory in the embedding spaceRn. As we have
constructedN state vectors in the embedding spaceRn, the
problem is how to use them in order to find a set of linearly
independent vectors inRn which can satisfactorily describe
the attracting manifold within the phase space according to
the theoretical concepts of Sect. 2.1. These vectors constitute
part of a complete orthonormal basis{ei, i = 1, 2, ..n} in Rn

and can be constructed as a linear combination of vectors on
the reconstructed trajectory inRn by using the relation

sT
i X = σic

T
i . (8)

According to singular value decomposition (SVD) theorem,
it can be proved that the vectorssi andci are eigenvectors of
the structure matrixXXT and the covariance matrixXT X of
the trajectory, according to the relations

XXT si = σ 2
i si, XT Xci = σ 2

i ci, (9)

(see Brogan, 1982). The vectorssi , ci are the singular vec-
tors ofX, andσ i are its singular values, while the SVD anal-
ysis ofX can be written as

X = S6CT , (10)

where S = [s1, s2, ...sn], C = [c1, c2, ...cn] and
6 = diag[σ1, σ2, ...σn]. The singular values are assumed to
obey the orderingσ≥σ2 ≥ ... ≥ σn ≥ 0 is assumed. It is also
known from the SVD theorem that the non-zero eigenvalues
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of the structure matrix are equal the to non-zero eigenval-
ues of the covariance matrix. This means that ifn′ (where
n′

≥ n) is the number of the non-zero eigenvalues, then
rankXXT

= rankXT X = n′. It is obvious that the n′-
dimensional subspace ofRN spanned by{si, i = 1, 2, ...n′

}

is mirrored to the basis vectorci , which can be found as the
linear combination of the delay vectors by using the eigen-
vectorssi according to Eq. (8). The complementary subspace
spanned by the set{si, i = n′, 2, ...N} is mirrored to the ori-
gin of the embedding spaceRn according to the same relation
(8) i.e. the number of the independent eigenvectorsci that
are sufficient for the description of the underlying dynamics
is equal to the numbern′ of the non-zero singular valuesσi

of the trajectory matrix. The same numbern′ corresponds to
the dimensionality of the subspace containing the attracting
manifold. The trajectory can be described on the new basis
{ci, i = 1, 2, ...n} by the trajectory matrix projected on the
basis{ci} given by the productXC of the old trajectory ma-
trix X and the matrixC of the eigenvectors{ci}. The new
trajectory matrixXC is described by the relation

(XC)T (XC) = 62. (11)

This relation corresponds to the diagonalization of the new
covariance matrix so that the components of the trajectory
are uncorrelated in the basis{ci}. Also, from the same re-
lation (11) we conclude that each eigenvalueσ 2

i is the mean
square projection of the trajectory on the correspondingci .
Thus, the spectrum{σ 2

i } includes information about the ex-
pansion of the trajectory in the directionsci as it evolves in
the reconstructed phase space. This phase space, explored
by the trajectory, corresponds – on the average – to ann-
dimensional ellipsoid for which{ci} give the directions and
{σ i} the lengths of its principal axes in the subspace spanned
by eigenvectors{ci} corresponding to non-zero eigenvalues.
However, when the system is perturbed by external noise
or deterministic external input, then the trajectory begins to
be diffused in directions corresponding to zero eigenvalues
where the external perturbation dominates. As we show in
the following, the replacement of the old trajectory matrix
X with the newXC works as a linear low pass filter for the
entire trajectory. Moreover, the SVD analysis permits one
to reconstruct the original trajectory matrix by using theXC
matrix as follows

X =

n∑
i=1

(Xci)c
T
i . (12)

The part of the trajectory matrix which contains all the
information about the deterministic trajectory, as it can be
extracted by observations, corresponds to the reduced matrix

X =

n′∑
i=1

(Xci)c
T
i , (13)

which is obtained by summing only with respect to eigenvec-
torsci with non-zero eigenvalues. From the relation (12) we

 

 

 
 

Figure 5 
 

Fig. 5. Geotail orbit during the time interval 94, 341, 00:00 UT to
94, 345, 00:00 UT. During the time interval 341, 00:00 UT to 342,
12:00 UT the spacecraft moves in the dawn magnetosheath while it
remains near the magnetopause and the low latitude boundary layer
region of the magnetosphere.

can reconstruct the original time seriesx(t) by usingn new
time seriesV (ti) according to the relation

x(t) =

n∑
i=1

Vi(t), (14)

where everyVi(t) is given by the first column of the matrix
(Xci)cT

i . The Vi(t) time series are known as SVD recon-
structed components (Elsner and Tsonis, 1996). This is a
kind of n-dimensional spectral analysis of a time series.

The new time seriesVi(t) constitute the reconstructed time
series components of the SVD spectrum, corresponding to
the spectrum of the singular vectorsci . The dependence
of SVD analysis upon the existence of external noise is de-
scribed by Broomhead and King (1986) for white noise and
by Elsner and Tsonis (1996) for coloured noise. In the case
of white noise the singular values{σ i} of X are shifted uni-
formly according to the relation

σ 2
i = σ 2

i + 〈ξ2
〉, (15)
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Figure 6 Fig. 6. From top to bottom,(a) AE index measurements with one minute resolution,(b) the energetic>38 keV electrons (second panel),(c)
the ratio O+/H+ (third panel) and(d) theBz component (fourth panel).

whereσ i are the singular values of the unperturbed signal
and〈ξ2

〉 the perturbation of the external noise. Relation (15)
indicates that, in the simple case of white noise the existence
of a non-zero constant background or noise floor in the spec-
trum{σ1} can be used to distinguish the deterministic compo-
nent. In this way we can obtain the deterministic component
of the observed time series

Xd =

∑
σi 〉noise

((Xc)i)c
T
i (16)

by using only singular valuesσi greater than the noise floor.
In addition, the relation (15) indicates that in the case of
white noise the perturbation of the singular valuesσi is in-
dependent of them. In contrast, as we show in the fol-
lowing, in the case of coloured noise the perturbation of
the singular values is much stronger for the first singular
value {σ1} than the others. This result may be expected as

the coloured noise includes finite dimensional determinism
while the white noise includes an infinite dimensional sig-
nal. The above difference between white and coloured noise
is significant because it makes the SVD analysis suitable for
the discrimination between different dynamical components
of the original signal.

2.5 Application of the SVD analysis in the deterministic
and stochastic Lorenz system

In this section we apply the SVD analysis at the Lorenz sys-
tem perturbed by external additive colored noise. The exter-
nal colored noise is obtained by the equation

X(ti) =

M/2∑
k=1

Ck cos(ωkti + ϕk), i = 1, ..., M, (17)
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Fig. 7. (a)Measurements of the magnetospheric energetic ions with
six seconds time resolution during the days 7–8 December (day 341,
00:00 UT to day 342, 12:00 UT), 1994. The bursting character of
the energetic ions is obvious and indicates the strong coupling of
the magnetosphere with the solar wind.(b) The autocorrelation co-
efficient for the first 1400 units of the lag indicates two different
processes. The first corresponds to an abrupt decay of autocorre-
lation coefficient and the second to a slow decay.(c) Amplitude
distribution for the first and second half of the magnetospheric en-
ergetic ions time series. It is apparent the stationarity of the time
series.

where the phasesϕk are randomly distributed in the interval
[0, 2π], andCk are constants related to the power spectrum

P(ωk) by

Ck = [P(ωk)1ω]
1/2. (18)

As we have mentioned in Sect. 2.1 these random time series
have a power spectraP(ω) of the formω−α and show low
dimensional fractality, with correlation dimensionD related
through the relationD = 2/(α − 1), according to Osborne
and Provenzale (1989). In this section we use two levels of
coloured noise corresponding to the percentages 37% (e =

0.1) and 185% (e = 0.5), according to equation

x(t) = xL(t) + excn(t), (19)

where the time seriesxcn(t) was constructed to have mean
value of 38 and a standard deviation of 47.

Figure 2a shows the stochasticx-Lorenz time series in-
cluding 37% of external coloured noise. Figure 2b shows the
first SVD componentV1 of the stochastic signal described in
Fig. 2a. The SVD reconstructed componentsV4 andV2−15
are shown in Figs. 2c–d. The componentV2−15 corresponds
to the sum

∑
Vi, i = 2 − 15 and approximates the origi-

nal time series (shown in Fig. 2a), while the componentV1
approximates the typical profile of a nonstationary coloured
noise. The componentV4 includes noticeable information
contained in the original signal according to Fig. 2a. Fig-
ures 2e–h present the corresponding slopes of the correlation
integrals estimated for the time series of Figs. 2a–d. The
slopes shown in Fig. 2e correspond to the original stochas-
tic signal, and the slopes shown in Figs. 2f–h correspond to
the slopes of the SVD componentsV1, V4 andV2−15 of the
original Lorenz coloured noise stochastic signal. The slopes
of the original stochastic signal (Fig. 2e) reveal a small ten-
dency for scaling and saturation of the scaling exponents at
the valuesD = 3 − 4 in the range1 ln r = 1 − 3 of the dis-
tancer in the reconstructed phase space. However, this weak
profile of scaling and saturation is entirely destroyed passing
to theV1 component, as seen in Fig. 2f.

A significant profile of scaling and low value saturation
of the slopes reappears passing to the next SVD components
V4 andV2−15, as we can see in Figs. 2g–h. The correlation
dimension estimated for the time seriesV4 andV2−15 was
found to be∼ 2.5. This value does not differ significantly
from the correlation dimension of the purely deterministic
Lorenz system. The results discussed above reveal three sig-
nificant characteristics concerning the coloured noise:

(a) The coloured noise causes a significant elevation of the
saturation valueD of the scaling exponents.

(b) The coloured noise perturbation is absorbed mainly by
theV1 SVD component destroying the scaling and the
low value saturation profile of the slopes corresponding
to theV1 SVD component.

(c) The higher SVD components(V4, V2−15) absorb a
much lower percentage of the noise. The correlation di-
mension of these SVD components does not differ sig-
nificantly from the correlation dimension of the purely
deterministic system.
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Table 1. This Table presents the ratioσ2/σ1 estimated for the original Lorenz system, the stochastic (coloured noise) Lorenz system and the
SVD components of the stochastic Lorenz system

Lorenz with coloured noise

σ2/σ1 e Noise % σ2/σ1 e Noise % σ2/σ1

Lorenz 0.54 0.1 37 0.33 0.5 185 0.04
Lorenz-V1 0.68 0.1 37 0.12 0.5 185 0.02
Lorenz-(V2−15) 0.63 0.1 37 0.45 0.5 185 0.41

Table 2. This Table presents the ratioσ2/σ1 estimated for the original Lorenz system, the stochastic (white noise) Lorenz system and the
SVD components of the stochastic Lorenz system

Lorenz with white noise

σ2/σ1 e Noise % σ2/σ1 e Noise % σ2/σ1

Lorenz 0.54 1 7.8 0.50 5 39 0.50
Lorenz-V1 0.68 1 7.8 0.45 5 39 0.45
Lorenz-(V2−15) 0.63 1 7.8 0.47 5 39 0.47

The above characteristics reveal a strong difference between
the behaviour of the coloured and white noise as we perturb a
dynamical system concerning the correlation dimension. As
we have shown elsewhere (Athanasiu and Pavlos, 2001), the
white noise leaves invariant the correlation dimension pass-
ing from the original stochastic signal to its SVD compo-
nents. However, the coloured noise leaves invariant only the
high SVD components. In the following we present results
concerning the autocorrelation coefficient and the singular
value spectrum of the Lorenz system perturbed by external
additive coloured noise. Figure 3a shows the autocorrelation
coefficient estimated for the original(e = 0) Lorenz system
and for the Lorenz system perturbed by external coloured
noise corresponding to amplitudes(e = 0.1, e = 0.5). In
the same figure we present the autocorrelation coefficient of
the first SVD componentV1 of the original stochastic sig-
nal. It is important to notice that there is a clear difference
between the original signal and itsV1 SVD component con-
cerning the decorrelation time. This characteristic is similar
for the coloured and white noise. On the other hand, the
behaviour of the coloured noise is different from that of the
white noise passing from one level of noise to another for
both cases of the original signal and itsV1 component, i.e.
in the case of the coloured noise the decorrelation time in-
creases as we increase the amplitude of the external pertur-
bation for both the original signal and its first SVD compo-
nent V1. This result is in contrast to the behaviour of the
white noise perturbation, as it has been shown in Athanasiu
and Pavlos (2001). The autocorrelation coefficients for the
next SVD components(V4, V2−15) of the original stochastic
signal are shown in Figs. 3b–c. These figures reveal similar
behaviour between the colored noise and the white noise, as

the decorrelation time of the(V4, V2−15) SVD components
remains invariant, passing from weak to strong external per-
turbation.

Figures 4a–b show the singular value spectrum estimated
for the coloured noise stochastic Lorenz system and its SVD
components(V1, V2−15). Figure 4a corresponds to the first
level(e = 0.1) of the coloured noise perturbation and Fig. 4b
to the second level(e = 0.5). As it is concluded by these
figures the coloured noise destroys the normal character of
the nontrivial singular values for the stochastic signal and
its V1 SVD component, causing the ratio of the second to
first eigenvalueσ2/σ1 to decrease significantly, passing from
the purely deterministic to the stochastic signal. However,
this effect is not observed for theV2−15 SVD component.
Table 1 presents the ratioσ2/σ1 estimated for the original
Lorenz system, the stochastic (coloured noise) Lorenz sys-
tem and the SVD components of the stochastic Lorenz sys-
tem. For both levels of perturbation(e = 0.1, 0.5) the ratio
decreases, passing from the purely deterministic system to
the corresponding stochastic system and theV1 component
of the stochastic system. On the contrary, the ratioσ2/σ1
increases, passing from theV1 to the V2−15 SVD compo-
nent obtaining almost the value ofσ2/σ1 estimated for the
purely deterministic Lorenz system. Table 2 is similar to Ta-
ble 1, corresponding to the case of the white noise perturba-
tion Lorenz system. This table shows that the ratioσ2/σ1 is
almost invariant, passing from the purely deterministic signal
to the corresponding stochastic signal and the SVD compo-
nents of the second. The above results reveal that as in the
case of the correlation dimension and the autocorrelation co-
efficient, the behaviour of the colored noise is strongly dis-
criminated from the white noise and in the case of the singu-
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Figure  8 Fig. 8. (a)The slope of the correlation integral as a function of the radiusr estimated for embeddingm = 6, delay timeτ = 10− 100 units
of the sampling time and Theiler’s parameterw = 50, 100. For delay timeτ = 20− 50 we observe the best scaling.(b) The same as (a) but
with delayτ = 30 andw = 5500, showing that there is no significant change of the slopes.(c) The same as (a) but withτ = 30,w = 500
and a embedding dimensionm = 4 − 7. (d) The same as (c) estimated by using the SVD filtering of the original signal for window length
τw, w = 50 and independent trajectory matrices for every embedding.

lar value spectrum as well.

2.6 The method of the false nearest neighbours in the esti-
mation of the dynamical degrees of freedom

Besides the correlation dimension, the method of false near-
est neighbours can also give an estimation of the small-
est value that is appropriate for the embedding dimension
m0. When the trajectory of the system is reconstructed in
a space of low dimensionality, then it is possible to have
self-crossings which give rise to false neighbours state vec-
tors. This is gradually improved as the embedding dimension
is increased, and for a large enough embedding dimension
m0 false crossings and false neighbours disappear. Letx(j)

be the nearest point tox(i) for an embedding dimensionm.
Then their distance is given by

r2
m(i, j) =

[x(i)−x(j)]2+...+[x(i+(m−1)τ )−x(j +(m−1)τ ]
2.(20)

Passing from them to m + 1 embedding dimension this
distance takes the form

r2
m+1(i, j) = r2

m(i, j) + [x(i + mτ) − x(j + mτ)]2. (21)

Then if
|x(i + mτ) − x(j + mτ)|

rm
> RT , (22)

the nearest neighbours at timei are declared as false (Abar-
banel et al., 1993). The threshold valueRT is estimated to
be in the range 10≤ RT ≤ 50. According to this criterion,
as the embedding dimensionm increases to a characteristic
valuem0, the percent of false nearest neighbours may drop
to zero. If this is actually observed for a time series, then
it yields a positive indication of the existence of low dimen-
sional dynamics underlying the observed signal.

2.7 The method of surrogate data

According to the relation (5), the scaling properties of the
correlation integral asr → 0 and the saturation of the scal-
ing exponentd(m) → D asm increases are necessary con-
ditions for the existence of low dimensional dynamics un-
derlying the experimental time series. However, it has been
shown that these conditions are not sufficient in order to con-
clude low dimensional dynamics from experimental time se-
ries with broad-band power spectrum, as they can also be sat-
isfied by stochastic systems (Osborne and Provenzale, 1989;
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Figure 9 Fig. 9. (a)Slopes of the correlation integrals estimated for the original signal and its first 30 surrogate data as a function of ln(r). (b) The
significance of the statistics as a function of ln(r), shown in (a).(c, d) The same as (a, b) but SVD analysis was used.

Provenzale et al., 1991). Moreover, according to Theiler
(1991), the concept of low correlation dimension (fractal or
integer) can be applied to time series in two distinct ways.
The first one indicates the number of degrees of freedom in
the underlying dynamics, and the second quantifies the self-
affinity or “crinkliness” of the trajectory through the phase
space. In the first case, the scaling and saturation profile are
caused by the recurrent character of the reconstructed trajec-
tory, i.e. by uncorrelated in “time” and correlated in “space”
state points. In the second case, they are caused by time cor-
related state points that are uncorrelated in space. In order to
discriminate between the two cases, known as dynamic and
geometric low dimensionality, we restrict the sum in Eq. (6)
to pairs(x(i), x(j)) with |i − j | > w, where the Theiler
parameterw is larger than the decorrelation time of the time
series.

When low dimensionality is persistent as a dynamic
characteristic after the application of Theiler’s criterion, then
we have to decide first between linearity and nonlinearity
and second between chaoticity and pure stochasticity. By
the term chaoticity we mean the case where the deterministic
component of the process is prevalent and reveals low di-
mensional chaos. For a stochastic process, the deterministic
component may correspond to low dimensionality and even

nonlinear and chaotic dynamics, but its effect can hardly be
observed as the process is driven mainly by noise. There-
fore, we focus here on the solution of the first problem, i.e.
determining whether the magnetospheric ions’ time series is
linear or nonlinear. This is done by following the method of
“surrogate” data (Theiler et al., 1992a, b).

The method of “surrogate” data includes the generation of
an ensemble of data sets which are consistent to a null hy-
pothesis. According to Theiler (1992a), the first type of null
hypothesis is the linearly correlated noise which mimics the
original time series in terms of the autocorrelation function,
variance and mean. The second and more general null hy-
pothesis takes into account that the observed time series may
be a nonlinear monotonic static distortion of a stochastic sig-
nal.

Every Gaussian process is linear, while a non-Gaussian
process can be linear or nonlinear. An experimental time se-
ries may show nonlinearity in terms of a non-Gaussian dis-
tribution, which may be due to a nonlinear transformation
of the linear underlying dynamics. In this case, the generated
“nonlinear” surrogate data mimic the original time seriesx(i)

in terms of the autocorrelation function and the probability
density functionp(x). It is always possible for a nonperiodic
time series of finite length to be a particular realisation of a



1986 G. P. Pavlos et al.: Geometrical characteristics of magnetospheric energetic ion time series

noise process or of a low-dimensional deterministic process.
Therefore, it is a statistical problem to distinguish between
a nonlinear deterministic process and a linear stochastic pro-
cess. For this purpose we use as discriminating statistic a
quantity Q derived by a method sensitive to nonlinearity,
as the correlation dimension estimation. The discriminat-
ing statisticQ is calculated for the original and the surrogate
data, and the null hypothesis is verified or rejected according
to the value of “sigmas”S

S =
µobs − µsur

σsur

, (23)

whereµsur andσsur is the mean and the standard deviation
of Q on the surrogate data, andµobs is the mean ofQ on the
original data. For a single time series,µobs is the singleQ
value (Theiler et al., 1992a).

The significance of the statistics is a dimensionless quan-
tity, but we follow here the common parlance and report it in
terms of the units ofS “sigmas”. WhenS takes values higher
than 2–3, then the probability that the observed time series
does not belong to the same family with its surrogate data is
higher than 0.95–0.99, correspondingly.

For testing the second more general null hypothesis
described above we follow Theiler’s algorithm (Theiler,
1992a), as well as Schreiber and Schmitz’s algorithm
(Schreiber and Schmitz, 1996). Both algorithms create
stochastic signals which have the same autocorrelation func-
tion and amplitude distribution as the original time series.

According to Theiler’s algorithm, a white Gaussian noise
is first reordered to match the rank of the original time series
(this is to make the original time series Gaussian). Then the
phases of this signal are randomized (to destroy any possible
nonlinear structure). Finally, the original signal is reordered
to match the rank of the above constructed coloured noise
(to regain the original amplitude distribution). The derived
shuffled time series is the surrogate time series.

The algorithm of Theiler was improved by Schreiber and
Schmitz by a simple iteration scheme, in order to strengthen
the ability of the surrogate data to fit more exactly the auto-
correlation function and the power spectrum of the original
time series. The procedure starts with a white noise signal, in
which the Fourier amplitudes are replaced by the correspond-
ing amplitudes of the original data. The rank order of the
derived stochastic signal is used to reorder the original time
series. By doing this the matching of amplitude distribution
is succeeded, but the matching of power spectrum achieved
in the first step is altered. Therefore, the process obtained
in the two steps is repeated several times until the change in
the matching of power spectrum is sufficiently small. In the
analysis of our data the improved algorithm of Schreiber and
Schmitz is used.

3 Data analysis and results

It is known that protons or heavy ions as O6+ could be ac-
celerated by Fermi acceleration at the Earth’s bow shock

(Ipavich et al., 1981; Freeman and Parks, 2000). However,
low charge state heavy ions are thought to be coming from
the Earth’s ionosphere and accelerated in the magnetotail
(Kirsch et al., 1984; Pavlos et al., 1985; Eastman and Chris-
ton, 1995; Anagnostopoulos et al., 1986, 1998; Sarafopoulos
et al., 1999; Christon et al., 2000). Moreover, it is known
that bursts of energetic electrons are caused only by acceler-
ation in the Earth’s magnetotail (Pavlos et al., 1985; Anag-
nostopoulos et al., 1986; Sarafopoulos et al., 2000). In this
work we study an extendend time series of energetic ions as
they were observed at the dawn magnetosheath of the Earth’s
magnetopshere. As we can see in Figs. 5a–b during the days
7–8 December (days 341–342), 1994, the spacecraft GEO-
TAIL moves in the down magnetosheath while it remains
near the magnetopause and the low-latitude boundary layer
(LLBL) region of the magnetosphere. Figure 6a shows the
AE index during the same period. The profile of theAE

index indicates strong magnetopsheric activity which could
cause the acceleration of electrons, protons and low charge
state heavy ions as O6+. Figures 6b–c present energetic elec-
tron fluxes as well as O+ fluxes, which obviously were ac-
celerated at the Earth’s magnetotail. Figure 6d shows theBz

magnetic field measurements during the same period. The
Bz component changes continuously from negative to posi-
tive values, indicating the magnetic connection of the space-
craft’s position and the Earth’s magnetosphere. The magnetic
connection of the spacecraft and magnetopshere can be also
concluded by the existence of energetic electron bursts (see
Fig. 6b). Sarafopoulos et al. have also determined energetic
electrons and proton bursts during the same period, and they
concluded their magnetopsheric origin (Sarafopoulos et al.,
2000). These observations strongly support the hypothesis
that the energetic ions observed during the same period at
the dawn magnetosheath were produced at the Earth’s mag-
netotail.

Figure 7a shows the measurements of the energetic ions
(35–46.8 keV) as they were observed by the experiment
EPIC/ICS during the days 7–8 December (day 341, 00:00 UT
to day 342, 12:00 UT), 1994, at the dawn magnetosheath
of the Earth’s magnetosphere. This figure reveals strong
and continuously repeatable bursts of energetic ions during
∼36 h. As it was explained before, it is reasonable to sup-
pose that these particles were accelerated in the inner mag-
netosphere during periods with a strong coupling of the mag-
netospheric system and the solar wind, simultaneously with
strong bursts of electrons and O+, as well as a clear en-
hancement of theAE index. Therefore, it can be supposed
that the dynamics of the energetic ions mirror the internal
magnetospheric dynamics, similar to theAE index during
periods with a strong coupling of the magnetosphere and
the solar wind (Pavlos et al., 1999c). The energetic parti-
cle differential fluxes are provided via the Energetic Parti-
cle and Ion Composition (EPIC) instrument of the GEOTAIL
spacecraft,and essentially remained close to the ecliptic plane
(Williams et al., 1994). The sampling time for the energetic
ions analyzed here was 6 s.

The time series shown in Fig. 7a containsNT
∼= 20 000



G. P. Pavlos et al.: Geometrical characteristics of magnetospheric energetic ion time series 1987

1 2 3 4 5 6 7 8
Embedding  Dimension

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
(fa

ls
e/

to
ta

l)
τ =30
RT=10

Energetic Ions

Surrogates

(a)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 1 2 3 4 5 6 7
Embedding  Dimension

0

2

4

6

8

10

12

S
ig

m
as

τ = 30
RT=10

Surrogates (b)

 

Figure  10 Fig. 10. (a)The ratio of the false to the total nearest neighbours for the original time series and its surrogate data as a function ofm. For this
estimation we usedτ = 30 andRT = 10. (b) The significance of the statistics for the surrogate data.
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Figure  11 Fig. 11. (a)The spectra of singular valuesσi , with parameterm = 10, 15, 20, estimated for the energetic ions time series.(b) The same with
(a) but discarding the first singular value.

data points. Figures 7b and c present the autocorrelation
function and the amplitude distribution of the energetic ions’
time series. The first figure reveals abrupt decorrelation of
the signal during the first 150–200 units of lag time, which
implies a broad-band spectrum. The second figure reveals
that the distribution of the amplitudes is non-Gaussian, which
under certain conditions (especially when the signal is er-
godic) can lead to the possibility of nonlinearity existing
in the signal. The nonlinearity can be dynamical or static,
something which will be clarified in the following by the
method of surrogate data. The random character of the ener-
getic ions’ time series is revealed by the decaying profile of
the autocorrelation coefficient showing an abrupt decay dur-
ing the first 100 units of the lag time and a slow, long decay
afterwards. The general profile of the autocorrelation coef-
ficient indicates two different physical processes: one corre-
sponding to short decorrelation time (100 lags) and the other
corresponding to long decorrelation time (1000 lags). The
first process is assumed to be related to a low dimensional
chaotic process, while the second corresponds to a coloured
noise mechanism. Of course the abrupt decay (first kind of

process) cannot be explained solely as a consequence of a
chaotic process, as it is possible to be caused by a static
nonlinear distortion of a linear stochastic system. The sta-
tionarity of the time series is tested by estimating the ampli-
tude distributions for the first and second half of the data set
shown in Fig. 7a. In the same figure, except for the stationar-
ity of energetic ions time series, the non- Gaussian character
of the signal is also revealed. This indicates the possibil-
ity for nonlinearity in the signal and the underlying physical
mechanism.

3.1 Correlation dimension

Figure 8a shows the slopes of the correlation integral esti-
mated for the embedding dimensionm = 6, different delay
times (τ ) and different values of Theiler’s parameter(w).
For delays of 10–50 lags the slopes reveal a satisfactory scal-
ing at low values of distance r in the reconstructed phase
space. This result indicates the delay value timeτ = 30−40
as a suitable value for a reliable reconstruction of the phase
space trajectory and the trajectory matrixX.
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Figure  12 
Fig. 12. (a)The magnetospheric energetic ions time series during the days 7–8 December 1994.(b) The time series corresponding to the
V1 component of the SVD analysis of the signal shown in (a).(c) The time series corresponding to the SVD reconstructed component
V2−10 =

∑
Vi , (i = 2−10), of the signal shown in (a).(e, f, g)The autocorrelation coefficient estimated for the signals shown in (a),(b),(c)

respectively.

Figure 8b is similar to Fig. 8a but for different values of
Theiler’s parameterw. This figure indicates that the slope of
the correlation integral remain almost invariant forw > 500.
Figure 8c shows the slopes, of the correlation integral for
different embedding dimensions(m = 4 − 7). It reveals a
tendency for low value saturation of the slopes(D ≈ 3− 4),
at the scaling region1ln(r) = 2.5− 3.5. However, the exis-
tence of external noise has destroyed substantially the scaling
and the saturation profile of the slopes at smaller values of the
distance(r). The dependence of the slopes of the correla-

tion integrals upon external perturbation has been described
in the previous section, where it has been shown that the ex-
ternal noise perturbation destroys the slopes at small values
of the distance(r) and leaves them invariant at higher values.
Also, it has been shown that the coloured noise can raise the
saturation value of the slopes by about 1–2 units. Contrary,
the white noise leaves invariant the saturation value of the
slopes. In order to exclude the perturbation of the slopes
caused by external high dimensional stochasticity related to
white or coloured noise, we use the new trajectory matrixXC
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obtained by the SVD method and describe the trajectory on
the basis of the singular vectors(ci), as it was presented in
Sect. 2.4.

Figure 8d presents the slopes estimated by using the new
trajectory matrixXC. We can now notice that there is clear
improvement of the scaling and saturation profiles. The ob-
served saturation valueD ≈ 2.5 of the slopes indicates the
low dimensionality of the physical process underlying the
energetic ions’ time series. Although the low value satura-
tion of the slopes indicates the existence of dynamical low
dimensionality in the underlying process, it is not helpful,
however, in deciding upon stochasticity or chaoticity of the
signal and the underlying dynamics. In order to exclude the
linear stochasticity of the signal we use the method of surro-
gate data (described in Sect. 2.7).

Figure 9a shows the slopes of the surrogate data estimated
for the embedding dimensionm = 6 and it is compared with
the corresponding slopes of the original time series. For the
statistics we used forty independent surrogate signals. The
significance of the statistics is shown in Fig. 9b. At the scal-
ing region1ln(r) = 1.0 − 3.0 of the distance(r) and the
significance takes values higher than two sigmas. This indi-
cates that the energetic ions’ time series does not belong to
the same family of the surrogate data and this happens with
probability greater than 0.95, i.e. we can reject the null hy-
pothesis with a confidence greater than 95%. Figures 9c and
d are similar to Figs. 9a and b and correspond to the slopes
obtained by the SVD trajectory matrixXC. Now the signifi-
cance (S) stays at valuesS = 3 − 5 along the entire scaling
region (Fig. 9d). This significance improves the confidence
of discrimination between the original and the surrogate data
to the value greater than 99%. Thus, the results discussed
above support the concept of the dynamic nonlinearity and
low dimensional chaos of the energetic ions’ time series, ex-
cluding with high confidence the case of linear stochastic-
ity, which can mimic dynamical nonlinearity and low dimen-
sional chaos after a static nonlinear distortion.

3.2 False nearest neighbours

The ratio of the false to total neighbours was estimated ac-
cording to the theoretical concepts presented in Sect. 2.6 for
the energetic ions’ time series, as well as for the two sets of
surrogate data. Figure 10a shows these ratios for the ions’
signal and the first ten series of surrogate data as a function
of the embedding dimension. For the statistical comparison
we have also used 40 independent signals of surrogate data.
In both cases the ratio of false to total neighbours approaches
zero form > 6−7, indicating that there are 6 or 7 dynamical
degrees of freedom of the underlying process. The signifi-
cance of the statistical tests is presented in Fig. 10b as a func-
tion of the embedding dimension (m). The levels of signifi-
cance are found to beS = 5 − 10 sigmas for the embedding
dimensionm = 2 − 5. This result indicates a strong possi-
bility of discrimination between the original signal and the
surrogate data, i.e. the null hypothesis can be rejected with
a confidence greater than 99%. These results also support

strongly the concepts of low dimensionality and dynamical
nonlinearity of the original signal excluding the hypothesis
of the linear stochastic signal, which can mimic the charac-
teristics of the observed energetic ions’ signal after a static
and nonlinear distortion.

3.3 Singular value spectrum

Figure 11a presents the normalized spectrum of the singular
values estimated for embeddingm = 10− 20. For the esti-
mation of the singular value spectrum we have followed the
methods that appeared in the papers of Broomhead and King
(1986), Albano et al. (1988), where they used a fixed window
lengthτw. According to Albano et al., the lower and upper
limits for τw are based on the autocorrelation function and are
proposed to beτc < τw < 4τc, whereτc is the correlation
time defined as the time where the autocorrelation function is
1/e. Here we use a fixed window lengthτw = 600, while the
delay time(τ ) and the embedding dimensionm are variable,
according to the relationτw = mτ . As we can see in Fig. 11a,
the first singular valueσ1 is much larger than the next ones
σi, i ≥ 2, which are pressed to the noise floor. This charac-
teristic was also observed in the case of the Lorenz stochastic
system, related to coloured noise perturbation and described
in Sect. 2.5. As we show in the next subsections, the similar-
ity of the energetic ions dynamics with the coloured noise
stochasticity is a global characteristic. This indicates fur-
ther that the dynamical process underlying the energetic ion
time series must be perturbed by an external coloured noise
process. Figure 11b shows the spectrum of singular values
σi, i ≥ 2. This figure reveals that by excluding the first sin-
gular valueσ1, we can obtain a normal spectrum with 6–7
nontrivial singular values above the noise floor. This result is
similar to the result obtained by the method of false nearest
neighbours and indicates 6–7 dynamical degrees of freedom
corresponding to the magnetospheric process underlying the
energetic ions’ time series.

3.4 SVD spectrum of reconstructed components

In order to further understand the dynamical process under-
lying the energetic ions’ time series, we study the spectrum
of the SVD reconstructed components according to the the-
oretical concepts and results discussed in Sects. 2.4 and 2.5.
Figure 12a–c show the time series corresponding to the ob-
served energetic ions time series (Fig. 7a) and itsV1, V2−10
SVD components. The componentV2−10 is computed by the
following sum

V2−10 =

1∑
i=2

0Vi (24)

of the Vi, i = 2 − 10 SVD components. TheV1 SVD
component shown in Fig. 12b describes the low variation of
the original time series, while the higher componentV2−10
(shown in Fig. 12c) includes the fast variation of the original
signal. Figure 12e–g presents the corresponding autocorrela-
tions coefficients of the time series shown in Fig. 12a–c. The
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Figure  13 Fig. 13. (a)The slopes of the correlation integrals estimated for theV1 SVD reconstructed component of the energetic ions time series for
m = 4 − 8, τ = 70 and Theiler’s parameterw = 100. (b) The same as (a) but for the SVD reconstructed componentV2−10 =

∑
Vi , (i =

2− 10) with parametersm = 4− 9, t = 7, w = 500. (c) The same as (a) but for theV1 SVD reconstructed component and its surrogate data
with parametersm = 6, t = 70, w = 100. (d) The same as (b) but for theV2−10 SVD reconstructed component and its surrogate data with
parametersm = 6, τ = 70, w = 50.
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Figure  14 Fig. 14. (a, b)The spectra of singular valuesσi , with parameterm = 10, 15, 20, estimated for the SVD reconstructed componentsV1, V2−10
of the magnetospheric energetic ions time series.
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autocorrelation coefficient of theV1 component indicates a
slow decay profile, while the autocorrelation coefficient of
theV2−10 SVD component shows a fast decay profile. These
characteristics could be explained by a linear stochastic pro-
cess related to theV1 component and a nonlinear chaotic
process underlying theV2−10 SVD component in accordance
with the results discussed in Sect. 2.5.

The above hypothesis is also supported by the results
shown in Fig. 13. Figure 13a presents the slopes of the
correlation integrals estimated for theV1 SVD reconstructed
component of the energetic ions’ time series. This figure re-
veals that theV1 component does not include any low dimen-
sional characteristic, as there is no satisfactory scaling and
low value saturation profile of the slopes. Figure 13c presents
the slopes of the correlation integrals estimated for the surro-
gate data of theV1 component for the embedding dimension
m = 6. This figure shows that there is no significant differ-
ence between the original signalV1 and the surrogate data.
As the surrogate data are produced by a nonlinear distortion
of a linear noise, we can conclude the linear character of the
V1 signal, while the high dimensionality of theV1 compo-
nent was concluded from Fig. 13a. Based on these results
we can support the concept that theV1 SVD component of
the ions’ time series is basically the manifestation of an ex-
ternal high dimensional coloured noise. This concept is also
supported strongly by the similarity which can be observed
between the slopes of the ions’V1 SVD component and the
V1 SVD component of the Lorenz system perturbed by an
external additive coloured noise (see Sect. 2.5).

On the contrary, theV2−10 SVD component of the ions
clearly reveals low dimensionality and nonlinear characteris-
tics. Figure 13b and d, are similar to Fig. 13a and c including
the slopes of theV2−10 component and its surrogate data.
The scaling and low dimensional profile of the slopes of the
V2−10 component are clearly indicated by Fig. 13b. The non-
linearly of theV2−10 signal is supported by Fig. 13d, as its
surrogate data are clearly discriminated by the original sig-
nalV2−10. The behaviour of the ions’V2−10 SVD component
corresponds to the behavior of theV2−10 component of the
coloured noise stochastic Lorenz system (see Fig. 2h). This
further strengthens the supposition about the existence of an
external high dimensional coloured noise component in the
magnetospheric dynamical process underlying the energetic
ions’ system.

As we have shown in Sect. 2.5, the singular value spec-
trum of theV2−10 component of the Lorenz coloured noise
stochastic system is similar to the singular value spectrum of
the original purely deterministic Lorenz system. In opposite
contrast, the singular value spectrum of theV1 component
of the Lorenz coloured noise stochastic system is similar to
the spectrum of the original Lorenz stochastic system, i.e. the
V1 component absorbs the main part of the external coloured
noise perturbation, while the SVD componentV2−10 remains
almost unperturbed by the external coloured noise compo-
nent, conserving invariant the characteristics of the original
(unperturbed) purely deterministic system. The above char-
acteristics of coloured noise stochasticity related to low di-

mensional chaos can be used for understanding the singular
spectra of theV1, V2−10 SVD components of the energetic
ions signal, shown in Fig. 14a–b. Figure 14a presents the
singular value spectrum of theV1 component of the ions’
time series and Fig. 14b presents the same spectrum for the
V2−10 SVD component of the ions signal. The singular spec-
trum of theV1 SVD component of the ions’ signal is similar
to the singular spectrum of the original time series shown
in Fig. 11a, i.e. there is strong asymmetry between the first
and the other singular valuesσi, i ≥ 2 which are pressed to
the noise floor. Contrary to this, the spectrum of theV2−10
component is normal, revealing 4–6 nontrivial singular val-
ues above the noise background. This analysis can be used
to support the central concept described previously, i.e. the
V1 SVD component of the ions’ time series includes mainly
the external coloured noise component, while theV2−10 SVD
component includes the internal dynamics of the underlying
magnetospheric process.

4 Summary and discussion

In this work we have estimated the correlation dimension,
the false neighbours and the singular value spectrum for the
magnetospheric energetic ions measured at the distant mag-
netotail. In addition, the null hypothesis is tested in order to
exclude the case where the original time series arises from
a linear stochastic process, but the observed time series may
be a nonlinear distortion of the underlying linear time series
(Theiler et al., 1992a, b). For the application of the test of
the null hypothesis we have used surrogate data constructed
according to Schreiber’s algorithm, to mimic the amplitude
distribution and the power spectrum of the magnetospheric
signal. The significance of the discriminating statistics was
found to be higher than two sigmas, permitting us to reject
the null hypothesis with a confidence greater than 95%.

The correlation dimension was found to be∼3 − 4, while
the false neighbours and the singular value spectrum have
shown∼6 − 7 independent dynamical degrees of freedom.
This result is in accordance with the value of the correlation
dimension (D2), as the correlation dimension and the maxi-
mum number(n) of the degrees of freedom are connected by
the relationn ≤ 2D2 + 1.

Moreover, the SVD analysis has revealed two different
physical processes related to the magnetospheric dynamics
concluded by the observed energetic ions’ signal. The first
process corresponds to a stochastic external component, as
was indicated by the first SVD component. In this case the
test of the null hypothesis has shown that there is no sig-
nificant difference between the surrogate data and the first
SVD component. The second process corresponds to a low
dimensional chaotic component, as was indicated by the re-
constructed time series obtained by adding the next SVD
components. In this case the test of the null hypothesis has
shown a strong difference in the discrimination of the sur-
rogate data and the reconstructed time series. In addition,
the Lorenz system perturbed by external coloured noise has
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shown a strong similarity with the the ion time series accord-
ing to the above chaotic analysis. In particular, the behaviour
of the SVD components of the stochastic Lorenz signal and
the magnetospheric ions signal were found to be quite simi-
lar for the first component and the reconstructed signal. The
comparison of Lorenz’s results to those of the ions’ signal
supports the above concept of two independent underlying
physical processes underlying the observed ions signal. The
first process may be related to the stochastic dynamics of the
solar wind system and the second one to the internal low-
dimensional chaotic dynamics of the magnetospheric system.
Finally, the above results are in complete agreement with the
previous results obtained by the chaotic analysis of magne-
tosphericAE index.
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