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Abstract. In this paper we report new kinetic features of
ions and electrons observed in the vicinity of the recon-
nection layer on 10 January 1997. This event has a three-
dimensional magnetic field topological structure, which is
much more complex than the previously suggested two-
dimensional magnetic configuration. The ion distributions
are non-gyrotropic and electrons show non-Maxwellian dis-
tribution functions. Acceleration of multiple ion beams, both
parallel and perpendicular to the local magnetic field, have
been observed. The perpendicular acceleration of the multi-
ple ion beams can be explained by plasma mixing between
the meandering ions accelerated around the ion diffusion re-
gion and the cold ions convected directly from the magne-
tosheath without passing through theX-line region. The
parallel acceleration of the multiple ion beams can be un-
derstood by the fact that high-velocity ions ejected from the
vicinity of the X-line mix with the plasma flowing directly
across the boundary. We observed the kinetic effect of the
separation of the electron and ion edges due to the time-of-
flight effect. It is stressed that kinetic processes are the key
to understanding these new observations that cannot be ade-
quately explained by magnetohydrodynamic (MHD) models.

Key words. Space plasma physics (magnetic reconnection;
charged particle motion and acceleration) – Magnetospheric
physics (magnetopause, cusp, and boundary layers)

1 Introduction

The magnetic reconnection process is crucial to under-
standing fundamental plasma phenomena in geophysi-
cal/astrophysical plasmas, such as the Earth’s magneto-
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sphere, solar and stellar flares, and the astrophysical accre-
tion disks. The rate of magnetic reconnection is controlled
by the geometry of the dissipation region, where the ideal
MHD description breaks down and the frozen-in condition
is violated. Resistive MHD models typically produce slow
reconnection, consistent with the theory of Sweet-Parker but
inconsistent with the fast reconnection observed in nature.
Understanding the mechanisms for breaking the frozen-in
condition, the associated rate of reconnection and the de-
position of magnetic energy into high-speed flows and en-
ergetic particles have been major issues. Recent intensive
observations and particle simulations have provided us with
some new clues for understanding collisionless reconnection
(Drake, 2001; Birn et al., 2001; Shay et al., 2001; Pritch-
ett, 2001; Hoshino et al., 2001; Hesse et al., 1999; Deng
and Matsumoto, 2001; Oieroset et al., 2001; Nagai et al.,
2001; Mozer et al., 2002; Scudder et al., 2002). A number
of kinetic features observed by satellites are thought to play
a significant role in magnetic reconnection. The observed
velocity distributions are in general non-Maxwellian, such
as those for high-speed ion beams. These beams are often
observed when a satellite crosses the plasma sheet bound-
ary (PSBL) (Parks et al., 1998; Lui et al., 1994; Frank
et al., 1994; Eastman et al., 1984). Another class of ob-
served non-Maxwellian distribution functions is for counter-
streaming ions (CSIs) along the magnetic field line, often ob-
served inside the plasmamoids/flux ropes (Mukai et al., 1996;
Hoshino et al., 1997). However, detailed observations of par-
ticle distribution functions in the vicinity of the reconnection
layer are still rare.

On 10 January 1997, a large magnetic cloud struck the
Earth, resulting in a dramatic increase in auroral activity.
During this period, GEOTAIL skimmed along the dayside
magnetopause. Deng and Matsumoto (2001) found the first
evidence of collisionless reconnection in the event. Naka-
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Fig. 1. GEOTAIL data from 05:30 UT
to 06:30 UT on 10 January 1997,
as the spacecraft traversed through
the dayside magnetopause boundary.
The GSM (geocentric solar magne-
tospheric) coordinate system is used
with x toward the Sun, and thex −

z plane contains the Earth’s dipole
axis. Frequency-time spectrograms of
the plasma wave electric and magnetic
field data are shown in Part A. The bar
above the electric field plots identifies
the region encountered. The plot above
that is an expanded time-scale plot of
Bx magnetic field data. Part B con-
tains plots of the plasma temperature,
density, andz direction flow speed in
panels “I”, “II”, and “III”. The mag-
netic componentsBx andBz are shown
in panels “IV” and “V”. Part C con-
tains the energy-time diagrams of elec-
trons and ions with dawnward, sun-
ward, duskward and anti-sunward di-
rections, respectively.

mura et al. (1998) have shown the kinetic effect of the lower
cut-offs in the ion distribution function due to the velocity
filter effect. In this paper we report new dynamic features of
ions and electrons observed in the vicinity of the reconnec-
tion layer in this event and the structure of the reconnection
layer. Their implication to the ion dynamics associated with
reconnection is also discussed.

2 Observations

The interesting Sun-Earth connection event was driven by a
Coronal Mass Ejection (CME), which was first observed by
SOHO 3 1/2 days earlier at 17:30 UT on 6 January 1997.
This event is the first solar terrestrial disturbance followed
from its solar source through to its consequences in the mag-

netosphere and ionosphere using the entire suite of resources
of the International Solar Terrestrial Physics (ISTP) program.

Figure 1 gives the summary of the observations from the
Plasma Wave Instrument (PWI) (Matsumoto et al., 1994),
Low Energy Plasma (LEP) (Mukai et al., 1994) and Magnetic
Field Experiment (MGF) (Kokubun et al., 1994) on GEO-
TAIL when it traversed the dayside magnetopause boundary
during the period from 05:30 UT to 06:30 UT on 10 January.
One prominent characteristic of the observations is the four
high-speed plasma velocity spikes ofVz (L1, L2, L3 andL4)
in panel “III” of part B, marked by the dashed lines and ar-
rows. These highly-accelerated plasma velocityVz spikes are
a result of magnetic reconnection (Sonnerup et al., 1979).
As GEOTAIL stayed in the southern magnetic hemisphere,
the observed highly-accelerated plasma flow from reconnec-
tion was southward (negative value). Another striking fea-
ture is the observation of a series of bipolar signatures in the
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Fig. 2. Expanded time scale observa-
tions from 05:35 UT to 05:45 UT for
the first acceleration flow eventL1 in
Fig. 1. Part A is the plasma wave par-
allel electric field waveform in an ex-
panded time scale showing ESWs. The
plot of E‖ verse E⊥ is at the right
side. TheE‖ andE⊥ are the electric
field components parallel and perpen-
dicular to the ambient magnetic field
B projected on to the antenna plane.
In Part B, “I”, “II”, “III” are the mag-
netic field componentsBx , By andBz.
The plasma temperature, density, ve-
locity in the z direction are shown in
panels “IV”, “V”, and “VI”. Part C
is the energy-time diagrams of elec-
trons and ions with dawnward, sun-
ward, duskward and anti-sunward di-
rections, respectively.

magnetic field component ofBx , shown in panel “IV”, which
is the basic feature of the Flux Transfer Events (FTEs) (Rus-
sell and Elphic, 1979). At the top of Fig. 1 isBx plotted in
an expanded time scale using high-resolution magnetic field
data. The observation of the series ofBx bipolar signatures
(labeledM1 toM7) indicates that we believe that magnetic is-
lands passed through GEOTAIL and reconnection was a tran-
sient and patchy process, not a steady one. For the bipolar
signature ofBx , takingM2 as an example, when a magnetic
island resulting from magnetic reconnection passed through
GEOTAIL, we observed a bipolar signature inBx from neg-
ative (earthward) to positive (sunward).

It is interesting to see that all the accelerated veloc-
ity spikes are associated with the encounters of the Low-
Latitude Boundary Layer (LLBL). The encounters of GEO-
TAIL with the magnetopause boundary are identified by the
orientational change ofBz shown in the panel “V” of part
B in Fig. 1 from northward (positive) in the magnetosphere
to the southward (negative) in the magnetosheath or reverse.
This crossing of the dayside magnetopause boundary (MP)
from the magnetosphere to the magnetosheath is also con-
firmed by the plasma data, i.e. by the change in tempera-
ture in panel “I” and density in panel “II”. The level of both
plasma density and temperature intermediating between the
magnetosheath (lower temperature and higher density) and

magnetosphere (higher temperature and lower density) is one
of the main characteristics of the LLBL. Due to the motions
of magnetopause boundary, the first MP crossing was fol-
lowed by three other incomplete ones before GEOTAIL fi-
nally exited into the magnetosheath (MS) at about 06:00 UT.

By carefully comparing panels “III”, “IV” and “V” of part
B in Fig. 1, we found that theBx bipolar signatures and the
highly-accelerated flow spikes ofVz appear at different re-
gions of the reconnection layer. Looking at part B in Fig. 1
from left to right, as GEOTAIL went from the magnetosphere
(MSPH) (positiveBz, higher temperature and lower density)
into the magnetosheath (MSTH) (negativeBz, lower tem-
perature and higher density), it encountered the MP several
times due to the moving of the MP boundary. The first high
velocity Vz spike ofL1 (panel “III”) was observed around
05:40 UT near the magnetosphere boundary (SPBL) as in-
dicated by positiveBz. No bipolar signatures ofBx were
observed in panel “IV”. GEOTAIL then recorded a series
of large bipolarBx signatures in the magnetosheath bound-
ary (SHBL) during the period of 05:41 to 05:44 UT,where
negativeBz but no high velocity flow ofVz was recorded.
The second, high velocity flowVz (L2) was observed in the
SPBL during the period of 05:45 to 05:47 UT without the
bipolarBx signatures. A series of bipolarBx signatures were
then recorded in the SHBL during the period of 05:47 to
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Plate 1. Distribution functions of ions (Panel A) and electrons
(Panel B) for the case of the acceleration of multiple-beams per-
pendicular to the magnetic field. The distribution functions are the
slices of the 3-dimensional distribution functions in the velocity
plane including the magnetic fieldB (V‖) and theE × B drift vec-
tor (V⊥). The phase space densities are color-coded according to
the color bar at the right-hand side.

05:49 UT without the high velocityVz flow. The tendency
of the highly-acceleratedVz flow and the bipolarBx signa-
tures to appear in different regions of the reconnection layer
is consistent with the simulation results of an asymmetric re-
connection model at the dayside magnetopause, where the
high speed flow appears on the magnetosphere side with pos-
itive Bz (Nakamura and Scholer, 2000).

In Fig. 1, Part A shows the dynamic frequency-time spec-
trograms of electric and magnetic fields from the high-time
resolution Multi-Channel Analyzer (MCA), a part of PWI,
during the period of 05:30 UT to 06:30 UT. Part C shows
the electron and ion energy-time diagrams in the dawnward,
sunward, duskward and anti-sunward directions, detected by
LEP during the same period. We can see that coincident with
the four velocity spikes (L1, L2, L3 andL4), there were cor-
respondingly four bursts of wave activities (labeledW1, W2,
W3 andW4), and four large increases in the fluxes of the en-
ergetic ions and electrons (labeledP1, P2, P3 andP4). The
onset and cutoff of both the waves and particles happened
almost simultaneously.

By checking Part C in Fig. 1 carefully, we observed the ki-
netic effects of the accelerated flow event. When GEOTAIL
went from the magnetosphere side toward the magnetosheath
side and encountered the LLBL at 05:39 UT, it first recorded
the increase in the flux of the energetic electrons, and then
the increase in the energetic ions. When GEOTAIL left the
reconnection layer and finally exited into the magnetosheath
side at 06:00 UT, it first left the ion edge and then the electron
edge. Figure 2 shows the observations with expanded time
scale for the period of 05:35 to 05:45 UT. We can clearly see
the separation between the electron and ion edges (indicated

Plate 2 (Deng et al.)
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Plate 2. Distribution functions of ions (Panel A) and electrons
(Panel B) for the case of the acceleration of multiple-beams parallel
to the magnetic field. The distribution functions are the slices of the
3-dimensional distribution functions in the velocity plane including
the magnetic fieldB (V‖) and theE × B drift vector (V⊥).

by the arrows). Electron velocity distribution functions near
the edge were highly structured at both low and high ener-
gies. These observations are quantitatively consistent with
the quasi-stationary reconnection geometry (Gosling et al.,
1990). It shows that the electron and ion edges of the LLBL
are separated from one another, with the electron edge being
located closer to the Earth. This offset in the electron and
ion edges to the LLBL is a consequence of the fact that the
entering magnetosheath electrons have much higher parallel
speeds than the entering magnetosheath ions, while both the
electrons and the ions share the same transverse drift.

A unique characteristic of this reconnection event is the
existence of the strongBy magnetic field component. Note
that in panel “II” of part B in Fig. 2 there was a distinct in-
crease in theBy magnetic field component occurring almost
simultaneously with theBz magnetic field component de-
crease, as shown in panel “III” of part B when GEOTAIL
approached the LLBL around 05:39 UT. The existence of
the large and stableBy component created three-dimensional
magnetic field topology at the dayside magnetopause recon-
nection layer. The magnetic force lines in the magnetic is-
lands are twisted and must have three-dimensional structure,
not the two-dimensional configuration as previously assumed
(Nakamura, et al., 1998). Without a large and stableBy , the
multiple X-line reconnection will only lead to the formation
of isolated magnetic loops with two-dimensional structure,
not the three-dimensional flux tubes with helical magnetic
fields.

Though the Wave Form Capture (WFC) on GEOTAIL op-
erates only 8.7 s every 5 min (Matsumoto et al., 1994), we
do have the data from the WFC at critical periods when
the 3-D transient magnetic reconnection took place near the
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spacecraft at the dayside magnetopause boundary layer. We
observed a variety of waveforms in this reconnection event
(Matsumoto et al., 2003). One of the interesting waveforms
is for the Electrostatic Solitary Waves (ESWs), a series of
large amplitude electric bipolar pulses parallel to the local
magnetic field, which is shown at the top of Fig. 2.

The existence of the large and stableBy magnetic field
component is critical for the observation of ESW at the day-
side magnetopause boundary for GEOTAIL. The ESW prop-
agates along the ambient magnetic field, and GEOTAIL has
only two sets of orthogonal electric field antennas extended
in the ecliptic plane. Also, a simulation has shown that re-
connection in the presence of a guide field is much more dy-
namic (Drake et al., 2003). TheBy guide field slows the
convection of electrons away from theX-line, which enables
the reconnection electric field to accelerate electrons in this
region to a very high velocity. The resulting magnetic-field-
aligned electron beams are Buneman unstable. The resulting
turbulence evolves into distinct nonlinear structures consist-
ing of localized regions of bipolar parallel electric field, cor-
responding to electron holes. The birth and death of these
“electron holes” leads to strong electron scattering and asso-
ciated energization (Drake et al., 2003).

An important property of the energetic population is its
pronounced anisotropy. Plate 1 and Plate 2 show the ve-
locity distributions of ions and electrons in the vicinity of
the reconnection layer. The present observations reveal quite
complicated ion and electron velocity distributions associ-
ated with reconnection. A striking point is the observation
of the nongyrotropic ion distribution functions with multiple
ion beams parallel and perpendicular to the local magnetic
field.

Plate 1 is a slice of the three-dimensional distribution func-
tions of ions and electrons in a plane including the mag-
netic field and the ion convection flow vector at the time
around 05:39 UT. From panel “A” of Plate 1, it can be clearly
seen that the ion distribution function is characterized by
non-gyrotropic, bunched ions perpendicular to the magnetic
field. The ion distribution consists of three well-ordered,
cold dense, warm, and hot beams. The beams are roughly
aligned in the plasma convection direction. Such a multi-
beam structure has also been observed in the distant current
sheet just after the passage of plasmoids (Tu et al., 1997).
The electron distribution function acquired at the same time
is shown in Panel B of Plate 1. The electron distribution func-
tions have a flat-top distribution along the magnetic field line
in the central part. By comparison with particle simulation
and test particle simulation results (Hoshino et al., 1997), the
kinetic behavior of the observed non-gyrotropic ion can be
understood as due to the mixing process of the meandering
ions. The energization of the meandering particle in the re-
connection layer plays an important role in the formation of
non-Maxwellian distribution functions (Speiser and Martin,
1996).

Plate 2 is a slice of the three-dimensional distribution func-
tion of ions and electrons in a plane including the magnetic
field and the ion convection flow vector at the time around
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Fig. 3. Scatterplots of ion in-plane velocities. The ion beams come
from separate locations, the slow one straddles the discontinuity and
other, a fast one, is below theX-line from Shay (1998).

05:42 UT. From panel “A” of Plate 2, it can be clearly seen
that the ion distribution also consists of three well-ordered,
cold dense, warm, and hot beams but parallel to the magnetic
field. The electron distribution function acquired at the same
time is shown in panel B of Plate 2. The electron distribution
has a high-energy tail in the convection direction for the per-
pendicular acceleration case in Plate 1, while in the parallel
acceleration case, the electron distribution has a high-energy
tail in the direction of the magnetic field. The hybrid sim-
ulations of magnetic reconnection have shown that the ion
distribution function can develop multiple beams as streams
of ions penetrate one another (Shay et al., 1998; Krauss-
Varban and Omidi, 1995; Nakabayashi and Machida, 1997).
The multiple beam distributions become very prominent both
close to theX-line and in the outflow region just downstream
of the seperatrix. Under such circumstances a fluid treatment
becomes problematic. Figure 3 shows the simulation result,
in which two beams can be clearly seen in the distribution
function of the ions from the downstream region displayed
(Shay et al., 1998). The distribution of the fast species has
a kidney bean-like shape with an axis of symmetry along
the magnetic field, while the slow-moving ions appear as a
Gaussian distribution. The electrons are accelerated to high
velocities (exceeding the Alfv́en velocity) first toward and
then away from theX-line. Because the ions are much more
massive, they cannot keep up with the electrons and separa-
tion between the two species occurs which produces electric
fields that point toward the midplane in the inflow region and
away from theX-line in the outflow region. In the dissi-
pation region, it is this electric field, not the magnetic field,
that accelerates the ions toward theX-line and then to Alfv́en
speeds away from theX-line. The observation of ESWs also
supports the existence of the parallel electric field. The ob-
servation of the acceleration of multiple ion beams parallel
to the magnetic field in Plate 2 can be understood by the fact
that while some of the outward flowing ions just downstream
of the discontinuity have been accelerated by the “shock”,
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others have passed through the dissipation region where they
were accelerated by large electric fields associated with the
fast electrons. These two acceleration processes lead to two
separate species of ions just downstream of the “shock”: a
background slow moving beam that has been accelerated by
the discontinuity in the magnetic field across the “shock”,
and high-speed beam which has been accelerated by the large
electric field near theX-line. The slow-flowing background
ions come primarily from above the discontinuity and the fast
beams are from the population near theX-line. The mixing
of the two distinct species from different regions of space im-
plies that the traditional MHD treatment of the slow shock is
not valid.

It should be stressed that the acceleration of multiple ion
beams parallel and perpendicular to the local magnetic field
has been repeatedly observed during multiple crossings of
the reconnection layer at the dayside magnetopause.

3 Conclusions and discussions

Magnetic reconnection plays a fundamental role in the dy-
namics of astrophysical plasma systems as the driver of ex-
plosive events, such as solar and stellar flares and more gen-
erally in dissipating magnetic energy as a balance to dy-
namo generation. Most of the observations about reconnec-
tion have been concerned mainly with the magnetic field and
plasma signatures, and it is clearly shown that using only
a velocity moment has lead to an incorrect conclusion. It
is fundamentally important to examine the parent distribu-
tion functions from which the moment are derived (Parks et
al., 2001; Chen et al., 2000). The wave and particle signa-
tures will provide important information about the dynam-
ics and small-scale structure of collisionless reconnection. It
is clearly shown that kinetic processes are the keys to un-
derstanding the new observations that are not adequately ex-
plained by magnetohydrodynamics (MHD) models. What
we have found is as follows:

1. It is revealed that the magnetic componentBx bipolar
signatures and the highly-accelerated flow spikes ofVz

appear in different regions of reconnection layer. The
Bx bipolar signatures tend to appear on the magne-
tosheath side near the magnetopause boundary, while
the highly-accelerated plasma flows are observed on the
magnetosphere side. This tendency is consistent with
the prediction of the asymmetric reconnection model at
the dayside magnetopause.

2. We observed the separation of the electron and ion
edges due to a time-flight effect. These observations
are quantitatively consistent with the quasi-stationary
reconnection geometry.

3. It is found that the ion distributions are non-gyrotropic
and electrons show non-Maxwellian distribution func-
tions. The dynamics of the ions are inherently nonfluid-
like, with multiple ion beams both parallel and perpen-

dicular to the magnetic field. The perpendicular ac-
celeration of the multiple ion beams can be explained
by the plasma mixing between the meandering ions ac-
celerated around the ion diffusion region and the cold
ions convected directly from the magnetosheath without
passing through theX-line region. The parallel acceler-
ation of the multiple ion beams can be understood by the
fact that high-velocity ions ejected from the vicinity of
theX-line mix with the plasma flowing directly across
the “shock”, which prevent the Rankine-Hugoniot con-
ditions from being strictly satisfied.

4. We first observed ESWs associated with reconnection
on the dayside magnetopause. This event has a three-
dimensional magnetic field topological structure, which
is much more complex than the previously suggested
two-dimensional magnetic configuration. The existence
of the large and stableBy magnetic field component is
critical for the observation of ESWs at the dayside mag-
netopause boundary for GEOTAIL. Simulations have
shown that reconnection in the presence of aBy guide
field is much more dynamic. The guide field slows the
convection of electrons away from theX-line, which en-
ables the reconnection electric field to accelerate elec-
trons in this region to very high velocity. The result-
ing magnetic-field-aligned electron beams are Buneman
unstable. The resulting turbulence evolves into distinct
nonlinear structures consisting of localized regions of
bipolar parallel electric field, corresponding to electron
holes. Such holes have been extensively studied in the
auroral region of the ionosphere with FAST data. The
observations of intense bipolar parallel electric fields
at the magnetopause (Deng et al., 2000; Cattell et al.,
2002), in combination with simulations, show strong
evidence that these objects play a central role in dissi-
pating magnetic energy during magnetic reconnection.
These intense parallel electric fields scatter the elec-
tron beams, causing strong electron heating and a large
effective resistivity. However, more observations and
particle simulations are needed to understand the con-
ditions under which these structures develop and their
impact on electron energization and the rates of recon-
nection in magnetospheric and astrophysical systems.
More work should be done about the fine structure in
three-dimensions of the reconnection layer, especially
the electron diffusion region, under different interplan-
etary conditions. There are still many key questions re-
maining. What is the observational criteria to identify
the difference between single and multipleX-line re-
connection? Where, when, and how does the reconnec-
tion take place? How is reconnection initiated? What is
the nature of turbulence associated with reconnection?
How does microturbulence couple to MHD or fluid tur-
bulence? It is becoming increasingly clear that to un-
derstand these complex physics processes requires that
both observers and modelers work hand-in-hand and not
in isolation. This is an area in which the Cluster II
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mission will play a very important role.
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