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Abstract. The solar wind-magnetosphere coupling during nation of the dynamical description for the global component
substorms exhibits dynamical features in a wide range of spaand a statistical approach for the multi-scale component.

tial and temporal scales. The goal of our work is to combineK ds. M heri hvsi | ind
the global and multi-scale description of magnetospheric dy- ey words. Magnetospheric  physics  (solar  wind-

namics in a unified data-derived model. For this purpose Wénagnetosphere mtleractlon's; storms and substorms) -
use deterministic methods of nonlinear dynamics, togethe§pace plasma physics (nonlinear phenomena)

with a probabilistic approach of statistical physics. In this
paper we discuss the mathematical aspects of such a com-

bined analysis. In particular we introduce a new method of

embedding analysis based on the notion of a mean-field di1 Introduction
mension. For a given level of averaging in the system the

mean-filed dimension determines the minimum dimension OfThe magnetospheric dynamics during substorms exhibits
the embedding space in which the averaged dynamical sysyoth globally coherent and multi-scale features. The globally
tem approximates the actual dynamics with the given accuroherent behavior of the magnetosphere is evident in such
racy. Th|S new technique iS firSt tested ona number Of We”'|arge_sca|e phenomena as the formation and ejection Of p|as_
known autonomous and open dynamical systems with angnoids, the recovery of the field lines from the stretched to a
without noise contamination. Then, the dimension analysiﬁfnore dip0|e_|ike Configuration’ the formation of global cur-

is carried out for the correlated solar wind-magnetosphergent systems, etc. At the same time, a number of small-scale
database usingBs time series as the input antl indexas  phenomena observed during substorms, such as MHD turbu-
the output of the system. It is found that the minimum em- jence, bursty bulk flows, current disruption, etc., are multi-
bedding dimension of Bs — AL time series is a function of  scale in nature; viz. they have broad band power spectra in
the level of ensemble averaging and the specified accuracy wide range of spatial and temporal scales. The traditional
Of the method. To extract the g|0ba| Component from the Ob'approach Of modeling the magnetospheric dynamics iS the
served time series the ensemble averaging is carried out ovgfist principal approach which explicitly takes into account
the range of scales populated by a high dimensional multithe nature of all forces in the system and then derives its col-
scale constituent. The wider the range of scales which argactive behavior by considering interactions on the scales de-
smoothed away, the smaller the mean-field dimension of th@ermined by the model. However, it is well recognized now
system. The method also yields a probability density func-that the collective behavior of a large number of complex
tion in the reconstructed phase space which provides the b%any-body systems is determined by only generic dynamical
sis for the probabilistic modeling of the multi-scale dynam- features such as the range of interaction forces, dimension-
ical features, and is also used to visualize the global porjity, and the nature of the order parameter. The dynamical
tion of the solar wind-magnetosphere coupling. The struc-models of such systems can be derived directly from data us-
ture of its input-output phase portrait reveals the existenceng general principals of nonlinear dynamics and statistical
of two energy levels in the system with non-equilibrium dy- physics. The clear advantage of such data-derived models is
namical features such as hysteresis which are typical fogheijr ability to reveal inherent features of dynamics, even in
non-equilibrium phase transitions. Further improvements intpe presence of complexity and strong nonlinearity. More-
space weather forecasting tools may be achieved by a combgyer, in many cases they still yield more accurate results and
require much less computational power than the first princi-
Correspondence tdA. Y. Ukhorskiy (sasha@astro.umd.edu) pal models.
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The earlier dynamical models of magnetospheric activity However, it was shown (Vespignani and Zapperi, 1998) that
were motivated by the global coherence indicated by the gein order for the system to achieve criticality, the fine tuning
omagnetic indices and inspired by the concept of dynamicabf control parameters is required. In the cellular automata
chaos. They were based on the assumption that the multimodels, like “sand-pile” or “forest fire” models, the fine tun-
scale spectra of observed time series are mainly attributed tong corresponds to the vanishing values of input parameters.
the nonlinear dynamics of a few dominant degrees of free-This makes these systems effectively autonomous and thus
dom (see reviews: Sharma, 1995; Klimas et al., 1996). Theguestions the relevance of the SOC framework to the mag-
dimension analyses of E time series gave evidence of low netosphere, whose dynamics is, to a large extent, driven by
effective dimension in the system (Vassiliadis et al., 1990;the solar wind input. Moreover, original SOC models gener-
Sharma et al., 1993). Further elaboration of this hypothe-ally cannot account for the large-scale coherent features of
sis resulted in creating space weather forecasting tools basdtle magnetosphere, since in most SOC models the multi-
on local-linear filters (Price et al., 1994; Vassiliadis et al., scale properties of the system are essentially independent
1995; Valdivia et al., 1996), data-derived analogues (Klimasof the global dynamics. To reconcile the multi-scale fea-
et al., 1997; Horton et al., 1999), and neural networks (Her-tures with the global dynamics in a SOC-like model, the
nandes et al., 1993; Gleisner and Lundstedt, 1997; Weigelsand-pile” model with the modified dynamical rules was
et al., 2002). The low dimensional organized behavior ofproposed (Chapman, 2000; Chapman et al., 2001). In this
the magnetosphere on global scales is also evident in mangnodel the scale-invariant avalanches were found to coexist
in situ observations of the large-scale features of substormsvith system-wide large-scale events. However, since such
by many spacecrafts including INTERBALL and GEOTAIL system-wide avalanches were found only in the “sand-pile”
missions (Petrukovich et al., 1998; Nagai et al., 1998; leda etnodels with a vanishing rate of the energy input, this still
al., 1998). cannot account for the specific global features of the actual

However, the subsequent studies have shown that not athagnetospheric dynamics. The SOC concept generalized for
aspects of magnetospheric dynamics during substorms corcontinuous systems (Lu, 1995) was further elaborated in the
form to the hypothesis of low dimensionality and thus cannotMHD model of the magnetospheric plasma sheet driven by a
be accounted for within the framework of dynamical chaosnoise-like input (Klimas et al., 2000). However, the SOC
and self-organization. For example, the power spectrum ofegime in this model was achieved by assuming the spe-
AE index data (Tsurutani et al., 1990) and magnetic fieldcific form of the time dependence of the diffusion coefficient,
fluctuations in the tail current sheet (Ohtani et al., 1995) havewhose relevance to the real magnetospheric plasma sheet is
a power-law form typical for high dimensional colored noise. still an open question. On the other hand, it was also noted
Prichard and Price (1992) have argued that by using a modfChang, 1999, 2000) that the properties of the criticality in
ified correlation integral (Theiler, 1991), a low correlation SOC and in forced SOC models are very similar to those of
dimension cannot be found for the magnetospheric dynamthe critical point in phase transitions.
ics. Moreover, detailed analyses (Takalo et al., 1993, 1994) In the physics of phase transitions, it is well known that
have shown that the qualitative propertiesAF time se-  the multi-scale behavior can naturally coexist with global dy-
ries are much more similar to the bicolored noise than to thenamics. There are two different types of phase transitions
time series generated by a low dimensional chaotic systemwhich are intimately related to each other and coexist in a sin-
It was also shown (Ukhorskiy et al., 2002a) that the low di- gle system. The global dynamics of the system corresponds
mensional dynamical models leave out a significant portionto the low dimensional manifold (coexistence surface) in the
of the observed time series which is associated with high diphase space of the system, which separates different phases
mensional multi-scale dynamical constituent. of matter like the “pressure-temperature-density” surface in

One interpretation of these multi-scale aspects of magnethe case of a liquid-gas system. Due to the slow changes in
tospheric dynamics was a multifractal behavior generated byhe control parameters the state of the system evolves along
intermittent turbulence (Borovsky et al., 1997; Consolini et the coexistence surface to the point where its stability is lost
al., 1996; Angelopoulos et al., 1999). Another approach toand it jumps to the state with lower energy through the first
magnetosphere modeling is based on the concept of selferder phase transition. In first-order phase transitions one
organized criticality (SOC). SOC was first introduced by or more of the first derivatives of the appropriate thermody-
Bak et al. (1987), who claimed that in “sand-pile” cellular namic potential (e.g. free energy) are discontinuous. The
automata the “criticality” (power distribution of avalanches singular point of the coexistence surfaces where the order
which conduct the energy transport in the system) ariseparameter (e.g. density in liquid-gas transitions, magneti-
spontaneously without tuning of the control parameters. Inzation in ferromagnets) vanishes corresponds to the second
SOC models the multi-scale features of substorms were reerder phase transitions and is called the critical point. At the
produced by a “sand-pile” or other non-equilibrium cellular critical point the first derivative of the thermodynamic poten-
automata which explicitly take into account the large num-tial is continuous while the second order derivative breaks.
ber of degrees of freedom in the system and the interaction¥he approach to the critical point corresponds to an increase
among them on different scales (Consolini, 1997; Uritsky in fluctuations of the control parameter. At the critical point
and Pudovkin, 1998; Watkins et al., 1999, 2001; Takalo etthe fluctuations are scale-invariant and the correlation length
al., 1999; Chapman and Watkins, 2001; Uritsky et al., 2002).(the size of the maximum fluctuation) diverges according to
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the power law. It is worth noting that the fluctuation growth for the probabilistic modeling of the multi-scale dynamical
is not restricted only to the critical point vicinity. Indeed, the constituent. Previous analysis (Ukhorskiy et al., 2002a) has
order parameter can exhibit fluctuations in a wide range ofshown that dynamical models are very similar to the mean-
scales during the first order phase transitions as well, such aéeld approach in phase transitions, since their outputs are ob-
the growth of steam bubbles in boiling water. The more fun-tained by averaging over the chosen range of scales in the re-
damental difference between the first and second order phasmnstructed input-output phase space. Thus, the multi-scale
transitions is that during the former, the symmetry in the sys-features of the time series not captured by the low dimen-
tem is preserved, while during the later the symmetry breaksional models are essentially the deviations of the data from
down (Stanley, 1971; Landau and Lifshitz, 1976). Phasethe mean-field model. According to the phase transition anal-
transitions in natural, non-autonomous systems are essemgy, the magnitudes of these fluctuations may be related to
tially dynamic and non-equilibrium, resulting in additional the solar wind input in a probabilistic fashion similar to the
properties such as hysteresis and dynamical critical expoinput-output critical exponent. The question is to what ex-
nents (Charkrabarti and Acharyya, 1999; Zeng et al., 1999tent the magnetosphere can be described as a deterministic
Hohenberg and Halperin, 1977). system and at what point the probabilistic consideration is
The magnetospheric dynamics during substorms sharesecessary. In this paper we address this question with the use
a number of properties with the dynamic non-equilibrium of the delay embedding analysis o 85 — AL time series.
phase transitions (Sitnov et al., 2000; Sharma et al., 2001WWe introduce a new technique of estimating the minimum
Sitnov et al., 2001). In particular, using the global singular embedding dimensions of input-output dynamical systems in
spectrum analysis afBg — AL data Sitnov et al. (2000) have the presence of a stochastic component.
shown that the global magnetospheric dynamics is organized It is now recognized that if all interaction scales are taken
in a manner similar to the “pressure-temperature-density” di-into account, the magnetosphere cannot be considered as a
agram of the water-steam system. It was also suggested th&dw dimensional system. However, introducing the proba-
the multi-scale properties of the data can be attributed to thaility density function on the attractor and performing the
dynamics in the critical point vicinity, i.e. second order phaseensemble averaging in the embedding space leads to the
transitions. Sitnov et al. (2001) also established the relatiorsmoothing of the small-scale high dimensional component.
between the magnitude of the largest fluctuations bftime Such averaged system has a finite dimension and thus allows
derivative and the solar wind parameters similar to the input-for a deterministic description. The dynamical model built
output critical exponeng. The phase transition-like behav- into the embedding space of the averaged system yields the
ior was also found in other substorm signatures. In particuregular component of the observed time series. The portion
lar, it has been noted (Consolini and Lui, 1999) that the cur-of the time series not captured by the low dimensional model
rent disruption is similar to the second order phase transitioncorresponds to the high dimensional constituent, which is
Consolini and Michelis (2001) proposed the cellular automa-smoothed away after the ensemble averaging and may be
tion model of solar wind-magnetosphere coupling based on @reated as noise from the dynamical modeling point of view.
revised forest-fire model (Drossel and Schwabl, 1992). Thdt is also found that the delay embedding of the time series
model has a repulsive fixed point similar to the critical point containing a high dimensional constituent is not unigue in
in phase transitions. The model was driven by the chaotidhe sense that there is a continuum of ways of extracting the
time series with the spectral properties of solar wind. It wascoherent portion from the observed time series. A particular
found that the power spectrum of the integrated output haghoice of the embedding parameters sets the complexity of
the broken power-law shape similar to tA& index spec- the resultant dynamical model, viz. the dimension of the em-
trum and that the relaxation phenomena occurred as sporadizedding space, and the permissible noise level. The higher
localized events similar to BBF. the complexity is, the smaller the noise level in the system,
The phase transition analogy clearly provides a frameworkbut the larger the amount of data and thus the greater the com-
for understanding the magnetospheric dynamics in which thguting power needed for constructing the dynamical model
global and multi-scale processes coexist. This also led t®f the system. In addition to the embedding space parame-
a new approach to the data-derived modeling of the solaters, the new technique presented in this paper also yields an
wind-magnetosphere coupling that combines the methods oéstimation of the probability density function in the recon-
nonlinear dynamics and statistical physics (Ukhorskiy et al.,structed phase space. Its moments yield the average dynam-
2002b). In the present paper we discuss the mathematicatal properties of the system, while its evolution with input
aspects of such a combined analysis. One of the central corparameters gives a full description of the collective behavior
cepts of this analysis is the notion of mean-field dimension.in the system. Thus, it can be used to model and forecast
For the given level of averaging in the system (the numberthe high dimensional portion of the observed dynamics not
of points in the phase space involved in the averaging) thepredicted by low dimensional deterministic models.
mean-field dimension determines the minimum dimension of The next section discusses the methods of determining the
the embedding space in which the averaged dynamical sysninimum embedding dimensions and the necessity of intro-
tem approximates the actual dynamics with the given accuducing a new method in the case of the time series with a
racy (noise level). This also yields the distribution function high dimensional component or noise. Then, we describe the
in the reconstructed phase space which provides the basimethod and its applications to different dynamical systems.
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ity, the description will be given for the case of the input-

Input Unknown Output output time series. In the case of a noise-free dynamical sys-
— Syst P> tem, whose evolution is given by a finite set of coupled ordi-
I(t) ystem O(t) nary differential equations, the observed time series data is a

function only of the state of the underlying system and con-
_ _ tains all the information necessary to determine its evolution.
Fig. 1. Structure of an input-output system. Thus, if a space large enough to unfold the dynamical attrac-
tor is reconstructed from the time series and the present state
of the system is identified, then the dynamics of the system

In Sect. 3 the embedding analyses of e — v By time se- ) . -
. . . can be inferred from the known evolution of similar states.
ries are presented and the application of the probability den:

sity function to the study of the global constituent in the solarThe phase space can be reconstructed by a delay embedding
method which provides the unique correspondence between

wind-magnetosphere coupling is discussed. The last sectio[he original dynamics and the dynamics in the embedding

fgﬁ:g;setggprﬁ::?crrisolgtesiir?;the paper and their |mpI|cat|onsspace_ The embedding theorem (Takens, 1981) states that in

the absence of noise,M > 2N +1, thenM-dimensional de-
lay vectors generically form an embedding of the underlying
2 Estimating the embedding dimension phase space of th€-dimensional dynamical system. In the
case of non-autonomous systems (Fig. 1)dheimensional

A large portion of the magnetospheric dynamics is driven byembedding space is formed by the input-output delay vec-
the solar wind input. Therefore, the method of estimatingtors:
the minimum embedding dimensions of thBs — AL time T AT
series should be valid for non-autonomous systems. Morell: - O1) =
over, the examination of the multi-scale properties of the so-
lar wind-magnetosphere coupling showed (Ukhorskiy et aI.,(I” fi=t, oo It=t;=0)» O, Or=1, -wes O1=(o-1): @)
2002a) that the multi-scale constituent of thé time se-  \wherel, = 1(r), 0, = O(t), M = M; + M. If the delay
ries has dynamical and statistical properties similar to thosqnatrix A is defined as:
of the colored noise. One of the possible origins of this
multi-scale portion ofAL is the scale-invariant constituent
of its driver, vBs (Freeman et al., 2000; Hnat et al., 2002). 1§, 0§
Thus, it is required that the method is also valid for the ran- :
dom systems, where dynamics is driven by a random procesd = : 2
(Arnold, 1998). :

There has been much work on determining the embedding I,TV,, OlTv,
dimensions of the time series generated by autonomous dy-
namical systems in the absence of dynamical noise (see r&C = ATA: Cv = wivi e RM k=1, ... M, ©)
view: Abarbanel et al., 1993). The methods developed for.
estimating the minimum embedding dimension are grounde efinition, its eigenvectorév;} form an orthonormal basis

on Takens’ embedding theorem (Takens, 1981; Sauer et al : -
1991), and most of them use the ideas of the false nearel%rt] the embedding space. Vectdsg }, which are referred to

. ) ) s principal components, are usually calculated by using the
neighbors technique (Kennel etal, 1992, _Cao, 1997)'. Later ingular value decomposition (SVD) method, according to
a number of workg dlscusseq the theorethal foundatlons lyhich anyM x N, matrixA can be decomposed as:
the delay embedding of the input-output time series (Cas-
dagli, 1993; Stark et al., 1996). This led to the generaliza- T r
tions of the existing method for the case of non-autonomoud® =Y W V' = Z W - Uk & Vi, (4)
dynamical systems (Rhodes and Morari, 1997; Cao et al., k=1
1998). Recently, considerable attention was drawn to the emwhere
bedding analyses of the time series generated by random d)(;
namical systems (Muldoon et al., 1998; Stark, 2001). How-" = V1, o Vi), U = (Ug, .o Ung),
ever, these methods are not applicable to the magnetospher\iﬁ
time series analysis, since they generally cannot distinguish
between the pure noise and a low dimensional time serieg). y7 =1, v .V’ =1,
with noise contamination. Thus, for estimating the embed-
ding dimension of the Bs — AL time series a new approach The set of all delay vectors forms an irregular cloudit.
is required. In the following we discuss a new method for es-If the number of delayd/ is greater than the minimum di-
timating the delay embedding parameters of random dynammension required for the delay embedding of the observed
ical systems. The method is applicable to both autonomousime series, then there are directionsRff into which this
and open systems, and therefore, for the sake of generatloud does not extend. In this case the singular spectrum

hen C is the covariance matrix. Sindg is Hermitian by

= diag(w1, ..., wpy), w1 < w2 < ... < wy
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Fig. 2. Graphical representation of determining the embedding parameters of the observed time series.

analysis helps to find the subspace relevant for constructingtrictly speaking, the choice of the expansion point is some-
the dynamical model of the system (Broomhead and King,what arbitrary and may be different for different applications.
1986). The eigenvalue@,f are the squared lengths of the For chaotic time series forecasting in autonomous dynamical
semi-axes of the hyper-ellipsoid which best fit the cloud of systems Sauer (1993) suggested that better predictability is
data points and the corresponding eigenvectgrsgive the  achieved when the average state vectaV of nearest neigh-
directions of the axes. The most relevant directions in spacd®orsx, which is also called the center of mass, is taken as
are thus given by the principal components correspondinghe center of expansion:

to the largest eigenvalues. Therefore, instead of the input-

. . . . . NN
output dplay ve.cto.r (1) in the embedding space, its pI’OjeCtIOFktcm _ Z X¢. X, € NN. @
on the firstD principal components: NN =~
x, = (7, OtT) - (V1, ..., VD), (5) It may appear that choosing a particular center of the expan-

sion is an auxiliary procedure that leads only to some in-

whereD is the minimum embedding dimension, yields a bet- crease in the accuracy of the model. However, it was shown
ter representation of the system. In this cas#/ i substan-  (Ukhorskiy et al., 2002a) that, in the case of the Earth's
tially greater thanD, small variations of\f/; andM do not magnetosphere, and presumably for a large class of non-
change the state of the system. For simplicity, all calculationsautonomous real systems, the expansion about the center of
in this paper are performed withf; = Mo. mass may be essential for modeling the system’s dynamics

If the embedding procedure is properly performed, that is,with the use of local-linear filters. It allows for a separa-
if the attractor of the system was completely unfolded, thention of the regular dynamical constituent, stabilizes the pre-
reconstructed stateg,, have a one-to-one correspondence diction algorithm, and provides the basis for modeling the
with the states in the original phase space and thus can bgylti-scale dynamical features. It was also shown that, for
used for construction of the dynamical model of the systemthe purpose of the long-term prediction, the right-hand side
(Farmer and Sidorowich, 1987; Casdagli, 1989, 1993; Sauelpf the model (6) can be reduced to its zeroth term, i.e. the
1993). For this purpose it is assumed that the underlying dyarithmetic average of the outputs corresponding to a one step
namics can be described as a nonlinear scalar map (6), whiciferated nearest neighbors equation:
relates the current state to the manifestation of the following
state regarding the output time series value at the next tim@;rfl = F(X"™) = (Ok+1), Xk € NN. (8)
step. The unknown nonlinear functich is approximated

locally for each step of the map by the linear filter: As will be shown later, using the center of mass also plays

a central role in estimating the minimum embedding dimen-
041 = FX) ~ FX) + s - 8Xe, (6) sions of the time series generated by random dynamical sys-
tems.
wherex; is the expansion point. Filter coefficients are cal- In the case of a low dimensional coupled dynamical sys-
culated using the known data, referred to as the training setem the minimum embedding dimension of its time series
which is searched for the states similar to the current, thatan be easily inferred directly from data by determining the
is, the states that are closest to it, as measured by the dispace where all false crossings of the orbits, which arose by
tance in the embedding space defined using the Euclideanirtue of having projected the attractor into a low dimen-
metric. These states are referred to as nearest neighborsional space, that was too low, disappear. In the original false
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Fig. 3. Distribution functions ofD,, calculated withV N = 3 for the time series generated by different autonomous dynamical systems. In
all three cased’; = M + O = 50. Grey arrows show possible choices of the embedding space dimef@gibarenz attractor{r = 0.01).
Distribution function rapidly drops to zero & = 3 — 4. (b) Mackey—Glass delay-differential equatiafr (= 0.1). Distribution function

drops to zero aD = 6 — 7. (c) 1/f-noise generator. The power shape of the distribution function indicates the absence of finite embedding
dimensions.

nearest neighbors method (Kennel et al., 1992), as well asnanifold containing “clean” dynamics. Moreover, the delay
in its generalized versions (Cao, 1997; Rhodes and Morariembedding in its original sense does not exist in this case,
1997; Cao et al., 1998), this is done by examining whethersince there is no smooth manifold containing the dynamical
a given state of the system and the state which was identitrajectories in any finite dimension. States of the system ly-
fied as its closest neighbor are nearest neighbors by virtueng within the range of scales affected by noise cannot be
of the projection into a low dimensional space that was tooresolved. Thus, in this case any method similar to the false
low. The minimum dimension is assessed by examining allnearest neighbors, which examines the structure of the attrac-
points of the attractor in dimension one, then dimension two tor on the smallest possible scale, will indicate that the sys-
etc., until there are no incorrect or false neighbors remaintem is high dimensional and a proper embedding has not been
ing. This approach works well for determining the minimum achieved. However, if the small-scale dynamical constituent
embedding dimension of the time series generated by a widaffected by noise is smoothed away, then the averaged system
class of autonomous and open systems in which dynamics iallows for delay embedding. In random systems the range
not subjected to noise. However, this method is not applica-of scales in the embedding space, affected by noise depends
ble to the time series generated by dynamical systems whiclon the noise amplitude, the inherent properties of the system
exhibit randomness. and the embedding space dimension. Thus, embedding of the
time series generated by random systems should be consid-
Let us consider the dynamics of a low dimensional systemgred as a procedure of choosing the embedding space as well
in the embedding space (assuming that the embedding progs determining the range of scales in this space which has to
cedure was performed correctly). In the absence of noise alhe smoothed away. In other words, introducing a probability
attractor’s trajectories lie on a smooth manifold. The dynam-gensity function on the attractor corresponding to the partic-
ics of the system is coherent and have the same propertiq§ar dimension of the embedding space and performing the
on all scales, starting at the largest scale given by the sizgnsemble averaging yields the smooth manifold which con-

of the attractor and ending at the smallest scale given by theains the coherent portion of the observed time series.
number of data points in the training set. No two trajecto-

ries can intersect in this case, and any two states of the sys- For a time series not contaminated by noise the criterion

tem can be resolved. Such system has a fixed dimension dbr a good embedding can be stated as follows. If two states
all scales, defined by the dimension of the space which prox; andx,, are close in the embedding space, then according
vides the embedding of the manifold containing the dynam-to Eq. (6) the values of a one step iterated scalar time series
ical attractor. This picture considerably changes when noiseorresponding to these state®,1 and 0,1, should also

is introduced in the system. The effect of noise is somewhabe close. In the case of random dynamical systems this is
similar to a diffusion. It destroys the coherence of the dynam-not necessarily true, since on small scales the coherence
ics on small scales, smearing the attractor points around than system’s dynamics might be destroyed by noise. In this



A.Y. Ukhorskiy et al.: Global and multi-scale features of magnetospheric dynamics 1919

T 1T T 1rrr T T T T TrrIr

case it is essential to not only find the dimension, but also
to determine the range of scales in this space which is
populated by high dimensional dynamics and thus needs
to be smoothed away. For that we suggest to substitute the
above criterion by the following approach. Let us consider
two statesx, and x,, of the random system in the space
formed by the firstD eigenvectors of the covariance matrix
{velk 1, ..., D}, together with the sets of their nearest
neighbors identified with the use of a Euclidean metric
in this space. By analogy with the noise-free dynamical
systems we consider this space to be an embedding spac
of the underlying dynamics, if there is a¥N such that
the following criterion is satisfied for any two states of the
system:
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where the center of mass vectors are given by Eq. (7). This
condition provides that the functiaf in Eq. (8) is well de-
fined, i.e.x{™ = x™ WheneverO;"Jfl = OITII.
According to this definition the embedding procedure con-
sists of finding two parameter®, and N N. If such parame-
ters are defined, then a dynamical model of the system can b&9- 4. Distribution functions ofD, calculated withVN' = 3 and
introduced in the form of Eq. (9). Averaging ovsiN near- M1 = Mo = 50 for the time series generated by the synchronized
est neighbors defines the smooth manifold of dimensionalit))'orenz attractor. Distribution function drops rapidly to zero around
D or smaller that can be fit locally to the data and then usedD =4
to interpolate the dynamics of the system. As will be shown
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later for many random systems the choicelbnd NN is
not unique. In such casea3 is usually a decreasing func-
tion of NN, the higher theD, the smaller theV N required

Thus, for determining the optimal embedding parameters
D and NN the following algorithm is proposed. First, the
parametetV N is fixed at some small value. Then, for each

for the embedding. The particular choice of the embeddingpoint (7,, 0,) of the input-output time series the conditions
parameters should be justified in each particular case by thef criteria (10) are considered in dimension one, then dimen-

accuracy of the dynamical model. The higher &/, the

sion two, etc., until they are satisfied in some dimendign

stronger the averaging introduced into the system and thugn other words we seek for:

a larger portion of the time series is considered to be noise

from the dynamical model point of view. However, it turns
out that a decrease MN does not always lead to an increase
in the model’s accuracy, and thus, for modeling purposes it i
not always preferable to minimize it. Moreover, a decreas
of NN in many cases leads to a growth Bfwhich is nec-

essary for a good embedding, which increases the amount

data needed and computational power required for constructt-)

ing the model.

For calculation purposes the criterion (9) can also be for-

mulated in the following way (see Fig. 2). B-dimensional

numberN N such that for all pointa from the data set the
inclusion of the state, in the set of its nearest neighbors

does not considerably change the value of the average of th

outputs corresponding to a one step iterated nearest neig
bors equation. In other words:

I X5 — %M || 0 = |0, — O — 0
Nzlf 1 Nfl
cm ocm
M= —— Ny X, X = —— (X + Xi), Xy € NN. (10)
NN & NN P

mf

=mf
n+l o

min D, : |0 il (11)

| <e,

wheree is some small number which sets the precision in

(‘:the system. Quantities differing by less thamre consid-

ered to be identical within the permissible accuracy. When

03),1 is found for all points in the training set, the probability

istribution of D,, is calculated. If the system has a finite em-
edding dimension for a chosen valueMiV, then the dis-
tribution function will drop to zero at this value. If there is
no finite embedding dimension for this value/éfV, the dis-

) . . . ._tribution function h wer-law ndence. In thi
space is considered to be an embedding space, if there |st bution function has a power-law dependence this case

N is increased and the whole procedure is repeated until a
finite dimension is found. Then, for all pairs of parameters
%NN, D) the dynamical models (8) are calculated and their
outputs are compared. The parameters which yield the high-
h- . .
est accuracy of the model are considered as optimal. The
delay embedding of the input-output time series generated
by systems with a random component follows from dynam-
ical systems theory based on Takens’ embedding theorem.
However, this technique of determining the embedding pa-
rameters is very similar to the methods known in statistical
physics. This recognition can be used as a link between the
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Fig. 5. Distribution functions ofD,, calculated withWN = 3 andM; = M = 50 for the time series generated by the synchronized Lorenz
attractor with 1f-noise contamination(a) Small noise amplitudes(= 0.5 > o1,y = 0.4). Distribution function drops rapidly to zero at

D = 4. (b) Large noise amplitudes(= 0.5 < o1,y = 15). The power shape of the distribution function indicates the absence of finite
embedding dimensions at the small scales.

deterministic and probabilistic approaches to modeling the Thus, the presented method can be considered as a tech-
collective behavior in random systems. It was pointed outnique of determining the mean-field dimensions of random
earlier (Ukhorskiy et al., 2002a) that the dynamical model (8)dynamical systems, since it yields the parameters of the
is very similar to the mean-field approach in thermodynamicsmean-field dynamical model, even when the embedding in
(e.g. Kadanoff, 2000), since its output is obtained by the av-its original sense does not exist, i.e. the system is high di-
eraging over the chosen range of scales in the reconstructedensional at small scales and, therefore, does not allow
phase space. For that the reconstrudedimensional space for the exact deterministic consideration. Before proceed-
is divided into the equal-probability clusters centered on ev-ing with the mean-field dimension analysis of the magneto-
ery point of the data set. The size of the cluster is definedspheric dynamics we test this method on several well-known
by the radiusR of a sphere containing the set 8N near-  autonomous and open dynamical systems, with and without
est neighbors. This defines the fixed-probability partition of noise. As was mention before, the calculations are not sensi-
the phase space, which consists of a large number of ovettive to the variations in the number of input and output delays
lapping clusters, all containing the same number of pointsin (1). All embedding analyses in this paper were carried out
but having different spatial sizes. Thus, after paramefers for M; = My = 50, and the delay time is equal to the sam-
and NN are found the probability density function of sys- pling time of the time series.

tem states in the embedding space can be estimated using the

K -nearest-neighbor approach (Bishop, 1995): 2.1 Autonomous dynamical systems

’ (12)  In this section we determine the embedding dimensions of
R(x, NN)P the time series generated by several autonomous dynamical
where the constant is defined by the normalization condi- Systems like, Lorenz differential equations, Mackey—Glass
tion. To obtain the model output the average is taken onlydelay differential equation, and A/noise generator.
over the states within a given cluster, while the states outside
this cluster are considered to be independent and, thereforé; 1.1 Lorenz attractor
do not contribute to the output. In other words, the output of . .
the mean-field model (8) is calculated by taking the ensembIéNe consider the Lorenz equations (Lorenz, 1963):
averaging with the use of the distribution function (12). From

p(X) =

. . . ! xW)=o0-(y—x) o =10
this point of view, the method presented here for determin- YO =r-x—y—x-z r—8/3 (13)
ing the embedding parameters has another very transpare ti(t) = boz4x-y b =28

meaning. It assures that in the reconstructed phase space th

ensemble averaging is well defined, viz. the average parame- At the given values of parameters the system produces
ters are close to the exact parameters of the system. This alsshaotic dynamics. The time evolution in the phase space
means that the mean-field approach is valid for the descripis organized by two unstable foci and an intervening sad-
tion of the collective behavior of the system. dle point. The Lorenz attractor is a fractal set lying on the
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smooth manifold embedded in three-dimensional Euclidean  { goq — T L 0.
space. After solving the set (13) with the foorth-order Runge- R — NN=3 1
Kutta, method with integral step 0.01 we apply our method i — NN=50 |]

of estimating mean-field dimensions to the) time series.
Since there is no noise in the system, the reconstructed dy-
namical attractor should be similar to the original one and
thus should have a fixed dimension on all scales. Therefore, g.100
the technique is expected to assess the minimum embedding
dimension without a significant ensemble averaging. The
distribution function ofD,, obtained forN N = 3 is shown I~
in Fig. 3a. It drops to zero rapidly d values from 3 to 4, 4
and, therefore, according to our method, thése= 3 — 4

are the good choices for the embedding dimensionscgf)a

L

e e e T

e bt =d=FA-FFI—

! ? 0.010 fi--=-------Sc-2k-----k- A--o-eemeeen :
time series. n bl 3
1 .
2.1.2 Mackey-Glass equation : 1
As another example of a low dimensional dynamical system i D(NN>100)
we consider the Mackey—Glass delay-differential equation ~ 0.001 bz===--y---y- -5 : =
(Mackey and Glass, 1977) 1 D(NN=50) 1D 0 100
i) = a-x(t—1 —b-x(t) (14) Fig. 6. Distribution functions ofD,, calculated withe = 0.5 and
14 x6(r —1) ’ different values oV N for the time series generated by the synchro-

nized Lorenz attractor with ¥/noise contaminationo,s). For
different N N the distribution function drops to zero at different val-

gir:sen'\:i?)%ﬁy-isltises S(gr?s:t':ﬁgt ;S}u tILrllre F:/r;:glepzlé elrr]]fg;n;] ues of D. The mean-field dimension decrease with the increase in
’ P fhe range of scale smoothed away after the averaging.

continuum of past values. It was shown, however, that for
the parameter values of = 0.2, » = 0.1, ¢ = 10, and
t = 30 the system becomes chaotic with a fractal dimension2 . .
X 2 1 -
of about 3.6 (Meyer and Packard, 1992). The equation was nput-output time series

solved with the fourth-order Runge-Kutta method, with inte- Before proceeding with the analysis of noise effects on the

gral step 0.1. The embedding analyses showed that at thes . -
X lay embedding, we present an example of determining the

parameter values the dynamical attractor can be embedde . . : . ; .
; . . . embedding dimensions of the input-output time series. As an
in 6-dimensional space (Mead et al., 1992). As in the case : . .
R . .~ example of a non-autonomous, low dimensional dynamical
of the Lorenz attractor, no averaging is required to determine

the minimum embedding dimension. FSIV = 3 the D, system we consider a synchronized Lorenz attractor. If the

distribution function rapidly drops to zero &t to about 6—7 x(r) component of one Lorenz system is used as a driver for
. : . . the second Lorenz system, then the attractors of both systems
(Fig. 3b), and, therefore, good choices for embedding dimen- : . ]
sion areD — 6 or 7. synchronize at the following values of parame_te*r&_ 60,
b = 8/3,0 = 10 (Pecora and Carroll, 1990), i.e. indepen-
dent of the initial conditions of the second system; after a
2.1.3 1ff-noise few steps its trajectory converges to the attractor of the driver.
Thus, theY (r) component of the second Lorenz attractor can
Toillustrate what happens if the above analysis is applied to &€ considered as an output of the non-autonomous chaotic
high dimensional system, we consider th¢-hoise time se-  dynamical system driven by the input ¢) component of
ries, viz. the time series produced by a random number genthe first Lorenz attractor. The distribution function D},
erator, where the power spectrum drops with an increase ialculated fortN N = 3 is shown in Fig. 4. The rapid drop in
frequency as If. TheD, distribution function calculated for the distribution function indicates th#& = 3 — 4 are good
NN = 3is shown in Fig. 3c. The distribution function has choices for embedding dimensions of the input-output time
a power dependence dn in the wide range of dimensions Series.
(D = 1-100). This indicates that for the given averaging the
system does not have a finite mean-field dimension. Sinc€.3 Noise effects
in this case almost no averaging was doneV( = 3), the
power shape of the distribution function also means that theThe examples of the time series presented above were gener-
observed time series does not allow for the delay embeddingted by low dimensional dynamical systems (except for the
in the sense of the original noise-free embedding theorem. 1/f-noise case). Consequently, the mean-field dimensions of
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——TTTT T namics of the system appears to be destroyed by the noise
within some range of scales. Thus, at small scales the dy-
namical properties of the systems are indistinguishable from

those of the noise itself. This also limits the information that

d can be extracted by exploring the dynamical trajectories on

the smallest scales.

0.100 === =4 \-\ W --=o-=mmmmpomeomomeomoeoooeee To extract more information about the system’s dynamics
and, in particular, to obtain the range of scales affected by
noise, we follow the prescription of our method and increase
the number of nearest neighbors participating in the averag-
ing. Figure 6 shows th®, distribution functions calculated
for different values ofNN. It is seen from the plots that
starting atN N = 50 the averaged systems start exhibiting a
low dimensional behavior. The particular values of dimen-
sions correspond to the minimum embedding dimensions of
the averaged dynamical systems, where the degree of aver-
aging is set byNN. The small-scale portion of the time
'D(NN=250); . series which is smoothed away due to the averaging is not
0.001 Pococooqoe Veoror ¥ Lt embedded in this particular dimension. Therefore, the as-

1 D(NN=100) 1 100 sessed dimensions should be considered only as the mean-

D field dimensions of the system. AtN = 50, D = 7 and for
NN > 100,D = 4.

F]ig' 7 ?ismb”tion functions oDy, fcg'w'ated Withl difgeégmd"a'”bes To distinguish the pair of parameters which is optimal for

of NN forvBs — AL time series of Bargatze etal. (1985) database. o o mpaqding of the observed time series we use these pa-

For differentN N the distribution function drops to zero at different rameters to build a dynamical model in the form of (8). The

values ofD. The mean-field dimension decrease with the increase ~ . y . e . ;

in the range of scale smoothed away after the averaging. optimal parameters are identified as those which provide the
highest prediction accuracy of the model. Throughout this
paper the prediction accuracy of dynamical models is quan-

these systems were determined with almost no averaging ant led by the normalized mean squared eriviq S £) (Ger-

thus do not differ from the minimum embedding dimensions ® enfeld and Weigend, 1993)
found with the use of other methods, like the false nearest
neighbors technique. In this section we consider the effects v
qf noise on the embed_dlng analysis of the ob_ser\{ed time sey yrop — 171 Z(Ok — 0p)2. (15)
ries. It is shown that, in the presence of a significant noise oo\ N =

component, the delay embedding becomes possible only af-

ter averaging the data in the reconstructed phase space. To o ]

study the effects of noise on delay embedding we consider Here,k = 110N span the forecasting intervalo is the

the input-output time series of the synchronized Lorenz at_Astandard deviation of the qugmal output time series, and the
tractor contaminated by a finoise time series of various -Symbol denotes the predicted values. The valudSE =
amplitudes. The noise amplitude is considered to be smallt corresponds to a prediction of the average. Har ¥ N)

if ¢ > o1/, Whereoy,; is the variance of the noise time Of (7, S0)NMSE = 0.9 and for (4, 1000VMSE = 0.8.
series. The distribution function ab, calculated for the  Therefore, according to our method the optimal embedding
small noise contamination witN N = 3 is shown in Fig. 5a.  Parameters®p, N'N) of the input-output time series gener-
As can be seen from the plot the distribution function does@ted by the contaminated synchronized Lorenz system are
not differ much from the distribution function calculated for (4, 100).

the clean time series of the synchronized Lorenz attractor After the embedding parameter® (N N) of the time se-
(Fig. 4). Since almost no averaging was done, the sharp dropies are determined, the probability density function on the
in the distribution function indicates the existence of low di- dynamical attractor can be introduced in the form of Eq. (12).
mensional embedding spade & 3—4) atthe smallestinter- Since it is a distribution function in the reconstructéd
action scales. However, this low dimensional picture signif- dimensional phase space, it yields the average properties of
icantly changes when the amplitude of the noise is substanthe system and provides the basis for a probabilistic descrip-
tially increased{ <« o1/¢). In this case the, distribution  tion of its dynamics. Different aspects of applying the dis-
function calculated foW N = 3 has a power shape similar tribution function to study the evolution of the system in
to the distribution function calculated for thefthoise time  the embedding space will be considered in the next sections,
series (Fig. 5b, Fig. 3c). This means that in the embeddingvhere the embedding analysis of magnetospheric dynamics
space of any dimension the coherent, low dimensional dy-s discussed.
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Fig. 8. The first three principal components@Bg — AL covariance matrix computed withl; = My = 32. The input (Bg) portion of
vector is shown in yellow, while the outpud ) part is indicated by the blue color.

3 Embedding analyses of magnetospheric dynamics rameters for the magnetospheric dynamics. For the model-
ing of AL and AU indices Clauer et al. (1981) considered
Previous studies pointed out that the magnetospheric dynanthe solar wind convective electric fieldBs, v2Bg and the
ics has different properties at different scales. The dimen-solar wind coupling parameter = U321(2) sin(6/2) (Aka-
sion analysis ofAE data (Vassiliadis et al., 1990) showed sofu, 1979). They found that the moving average linear fil-
that the correlation dimension saturates at low values, whichers based on these three inputs have the similar prediction
indicates the global nature of substorm dynamics. It was als@ccuracy of 40%. Vassiliadis et al. (1995) reported that the
shown that a large portion of th&E time series can be de- [ocal-linear filters driven by B, szlg sin4(0/2) andvB,
scribed by low dimensional dynamical models (Vassiliadis etyield a comparable predictability of L. For the predictions
al., 1995). However, it was also demonstrated that if all in-of high geomagnetic activity the best results were achieved
teraction scales are taken into account, thenAthietime se-  with unrectifiedv B, input. In this study the solar wind in-
ries does not have a low correlation dimension (Prichard angut is quantified by By, while the magnetospheric response
Price, 1992). Using the coast-line dimension analysis Sits represented by tha L index. This allows for the direct
nov et al. (2000) showed that the low dimensional behaviorcomparison of our embedding analysis with earlier results
can be derived only for the fixed range of the largest pertur-of Sitnov et al. (2000, 2001), obtained foBs — AL time
bation scales, while the singular value spectrum of data hageries. All analyses were carried out using the correlated
a power-law shape typical for the colored noise. The sub-database of solar wind and geomagnetic time series compiled
sequent analyses of the multi-scale constitueniffalso by Bargatze et al. (1985). The data are solar wind param-
indicated that it has dynamical and statistical properties simeters acquired by IMP 8 spacecraft and simultaneous mea-
ilar to the time series of high dimensional noise (Ukhorskiy surements of auroral indices with a resolution of 2.5 minutes.
etal.,, 2002a). The database consists of 34 isolated intervals, which contain
The main goal of our work is to develop a comprehensive42 216 points in total. Each interval represents the isolated
model that can account for both global and high dimensionainterval of auroral activity preceded and followed by at least
constituents of the solar wind-magnetosphere coupling durtwo-hour-long quiet periodv@s ~ 0, AL < 50nT). Data
ing substorms. The basis of this model is provided by the emintervals are arranged in the order of increasing geomagnetic
bedding analysis discussed in previous sections. Our methogctivity. In order to use bothBs andA L data in joint input-
yields the mean-field dimensions of the system that are usedutput phase space, their time series are normalized to their
for constructing low dimensional dynamical model to run it- standard deviations.
erative predictions of the observed time series (Ukhorskiy et
al.,, 2002a). Moreover, it also yields the distribution func- To determine the mean-field dimensions of the magneto-
tion of the high dimensional dynamical constituent in the re- spheric dynamics we follow the prescription of our method
constructed phase space. In this section we show how thiand estimate the embedding dimensions ofilfg — AL
distribution function can be used for studying the structuretime series after carrying out the ensemble averaging in the
of a low dimensional dynamical attractor and discuss its ap-embedding space. The distribution functionsipf are cal-
plication to probabilistic predictions of the magnetospheric culated for different values oV N, which set the range of
dynamics. scales participating in the averaging (Fig. 7). The distribu-
Previous studies of the solar wind-magnetosphere coution function calculated for averaging ov8fN = 3 has a
pling discussed different choices of the solar wind input pa-power-law shape. This indicates that at the finest scales the
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Fig. 9. The coherent dynamics in three-dimensional subspace spanned by the leading principal compoBgntsAf. covariance matrix.

(a) The dynamical manifold is derived with the use of the two-dimensional distribution funetion x3) calculated for the whole Bargatze

et al. (1985) database withi N = 300. The points of the surface are associated with the maxima of the conditional probability function
p(x2)x1, x3) = p(x:(zk)). (b) Smoothed dynamical manifold calculated for the first 20 intervals of Bargatze et al. (1985) database by Sitnov

et al. (2001).

dynamics in the system is irregular and cannot be embeddedov et al. (2001), we plot the data in three-dimensional space
in a finite-dimensional space. Only after a substantial rangegiven by the principal componenis, vo andvs of uBg— AL

of scales is smoothed awaly (v > 100) does the averaged covariance matrix. For a better comparison the principal
system start to exhibit a low dimensional behavior. Thus,components were calculated for the matrices computed with
for NN = 100 the mean-field dimension 13 = 7, and for  the sameM; = Mo = 32 number of delays as was used
NN = 250,D = 3. To define which embedding parameters by Sitnov et al. (2001). Vectorg;, vo andvs are shown

are optimal for modeling the evolution of the system we con-in Fig. 8. The delay vector projectiong , x2 andx3 onto
struct the dynamical model (8) and then calculsite S E for V1, V2 andvs roughly correspond to one-hour average values
different values of D, NN). For (3, 250)NMSE = 0.63 of input (normalizedv Bg), output (normalizedA L) and the
and for (7, 100) the error value is small&tM SE = 0.57. first time derivative of the input (for details, see Sitnov et al.,

. . 2000). To visualize the data we usg— x3 projection as the
After th timal bedd te®,(NN L : )
er the optimal embedding parametetd, (N N) are support plane, where the distribution functipixi, x3) is

chosen, the probability density function of the attractor states . X = .
can be estimated as Eq. (12). Since it is a distribution func-'erdUCEd according to Eq. (12), witiN' = 300 obtained

tion in D-dimensional reconstructed phase space, it can bgy_the mean-field dlm_e_znsmn analy_s!s. Theﬁ’ at any given
used for studying the collective behavior of the system. TheP oint ({1, xg) the condltlonal-probabllllty funct|-on of can
global dynamics of the system is described by the momentd€ estimated as the probability density funcnqmg‘f) cor-

of the distribution function. Thus, the zeroth order term in F€SPonding to the nearest neighbors of that point:
dynamical model (8), viz. the center of mass, is nothing
but its first moment. The distribution function can also be
used for visualizing the low dimensional component of the The points of conditional probability maxima calculated at
solar wind-magnetosphere coupling. Earlier procedures othe mesh points of the regular grid set represent the surface
visualizing the global part of the magnetospheric dynamicscorresponding to the most probable states of the system in
(Sitnov et al., 2000; Sitnov et al., 2001) involved a num- three dimensional phase space. Such a surface calculated for
ber of cumbersome procedures, such as the removal of thihe whole Bargatze database is presented in Fig. 9a. To visu-
hysteresis loops and the smoothing of the resultant 2-D suralize the evolution of the system along this surface we plot a
face. Our new systematic approach resolves these problemw/o-dimensional velocity field, viz. the average flow velocity
by substituting the raw data by its probability density func- in ax; — x2 plane calculated using the distribution function
tion in the reconstructed space, whose dimension is consise(x1, x2). As can be seen from the plot the structure of the
tent with the level of averaging and the level of noise. To surface and the corresponding circulation flows are very sim-
compare our results with the phase portrait obtained by Sitilar to those obtained by Sitnov et al. (2000). This similarity

~ k k k
p(x2lxt, x3) = p(s)),  x = (0 X)) e NN (16)
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is even more notable, since the phase portrait on the right was
derived only for the first 20 intervals of the database, corre-
sponding to the low and medium levels of substorm activity.
At the same time, the robustness of our technique yields the
phase portrait for the whole data containing both low and
high activity intervals. The most probable substorm cycles dynamic
are confined to the two-level surface, with the fracture going transition
roughly along thecs = 0 axis. Two levels of the surface can

be associated with the ground and exited states of the sys-

tem. The typical substorm cycle starts with an increase in

the average input;, while the average outpubp is constant /\

ground state

metastable
states

equilibrium
transition

or slowly decreasing, viz. the system is in its ground state.
At the same time the average input ratdirst increases and - "
then decreases to small values. Then the output component exited state X2
falls rapidly to negative values at almost constant input pa- X3
rameters, which corresponds to the transition to the exited
state. The recovery of the system to its ground state involves
the decrease in1 while the magnitude of3 first increases

and then fal!s to zero valfues' . | h h Fig. 10. The diagram of different transitions in a two-level system.
It was pointed out before (Sitnov et al., 2000) that bot The coexistence manifold and corresponding transitions from the

the surface and the corresponding circulation flows are closgyound to the exited state are showncin— x3 plane. Equilibrium

to the scheme of the inverse bifurcation (Lewis, 1991). Thistransitions correspond to the straight line connecting two branches
implies that the smooth manifold underlying the global por- associated with different states. The metastable states correspond to
tion of system’s dynamics has a folded structure known inthe blue segments of the manifold. An example of a typical dynamic
mathematics as a cusp catastrophe manifold (Gilmore, 1993)yansition which deviates from the equilibrium manifold is shown in
and in the physics of non-equilibrium phase transitions aged.

a coexistence surface separating deferent states of matter

(Gunton et al., 1983). In the case of the quasi-static phase

transitions in equilibrium systems the corresponding coex-to the exited state, as identified by changes in the shape of the
istence surface does not have such a folded structure. Idistribution function. According to criterion (15) the distri-
these systems the order parameter is a single-valued fundution function in Fig. 10c corresponds to the ground state of
tion of control parameters (Fig. 10). The fold appears onlythe system. The distribution function in Fig. 10b corresponds
in the non-equilibrium case, when the system is driven farto the moment when the transition to the exited state was just
from the steady-state equilibrium by the rapid changes in thanade. And finally, the function in Fig. 10a corresponds to
control parameters. As a result the metastable states, likthe fully developed exited state of the system. Thus, the
“overcooled” steam and “overheated” fluid, become possibledistribution function and its moments can be effectively used
and depending on its dynamical history, the system may be irto predict, visualize and analyze the global portion of the so-
two or more different states under the same set of control palar wind-magnetosphere coupling. Moreover, the description
rameters. This dynamical phenomenon known as hysteresigrovided by the distribution function is not restricted to the
explains the observed irregular structure of the transition lindow dimensional dynamical constituent. Indeed, if the distri-
(see Fig. 9a). It also strongly complicates the reconstructiorbution function and its evolution with the input parameters
and visualization of the global dynamical constituent (Sit- are derived from the observed time series, then, in principal,
nov et al., 2000). In the present approach this problem ist gives the full description of the collective behavior in the
overcome with the use of the distribution function. To visu- system. The dynamics of its first moment corresponds to the
alize the large-scale behavior we follow the dynamics of themean-field dynamical model, which yields iterative predic-
distribution function maxima which is somewhat analogoustions of the observed time series. As was discussed before
to the Maxwell convention in bifurcation theory (Gilmore, (Ukhorskiy et al., 2002a), the dynamical model leaves out
1993) and thus establishes the parallel with the equilibriuma significant portion of the dynamics. Indeed, in order to
coexistence surface. The existence of the multiple maxima igxtract the coherent component from the time series gener-
attributed to the dynamical hysteresis. The points on the surated by a system with some randomness, the model is forced
face corresponding to the transitions between the ground antb carry out the phase space averaging over a wide range
exited states are identified by the change in the position of thef scales. Therefore, the output of the model comes inher-
global maxima. Figure 11 shows the distribution function of ently smoothed and cannot grasp the large peaks and sharpest
x2 calculated at three points along the cut of the surface bychanges in data. As will be discussed in forthcoming publi-
thex1 = 9 plane. In all three cases it has a typical double-cations this problem can be partially resolved with the use
peak structure which indicates the existence of hysteresisof a distribution function, which yields the probabilistic de-
Figure 10 illustrates the system'’s transition from the groundscription of the multi-scale dynamical constituent. It can be
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Fig. 11. Evolution of the distribution function at the different stages of substorm. Double-peak shape of the function indicate the existence
of dynamical hysteresigc) The dominance of the left maximum indicates that the system is in the ground state (growth pha$ee

equality of the maxima corresponds to the transition from the ground to the exited state (expansion(ph&seylominance of the right
maximum indicates that the system is in the exited stated (late expansion or early recovery phases).

used to estimate the deviation of the data from the output otal models and at what point the statistical description is re-
the deterministic model and thus can be used for probabilisquired. This question was addressed by embedding analyses
tic predictions. Incorporating this distribution function in the of vBg — AL time series. A large portion of magnetospheric
space weather prediction tools has important implications fordynamics is driven by the solar wind input whose time se-
space weather forecasting. ries have scale-free power spectra. Thus, for its embedding
analyses we introduce a new method of determining the em-
bedding parameters of the input-output time series generated
4 Conclusions by random dynamical systems. To test our method we used
several well-known autonomous as well as input-output dy-
The solar wind-magnetosphere coupling during substorm$amical systems, with and without noise contamination.
exhibits dynamical features in a wide range of spatial and According to our embedding analysis, the multi-scale
temporal scales. The large-scale portion of the magnetoproperties of thewBg — AL time series are very different
spheric dynamics is coherent and well organized, while manyfrom the multi-scale properties of low dimensional chaotic
small-scale phenomena appear to be multi-scale. Most ofystems, like the Lorenz attractor or Mackey-Glass system,
the contemporary approaches to the data-derived modeling which the scale-invariance is reconciled with low dimen-
of magnetospheric substorms do not account for the coexissionality due to the fractal nature of their attractors. Due
tence of global and multi-scale phenomena and thus do noto the scale-invariance of its driver and/or due to its own
provide a complete description of the observed time seriescomplexity, the magnetospheric dynamics generate time se-
Low dimensional dynamical models effectively extract the ries which contain a small-scale component with properties
time series constituent generated by the large-scale coheof high dimensional colored noise. This high dimensional
ent behavior, but are unable to predict the features assockonstituent destroys the coherence of the system’s dynam-
ated with high dimensional multi-scale dynamics. At the ics in the phase space, smearing trajectories in some vicinity
same time, SOC-like models can reproduce a variety of theof the manifold containing the dynamical attractor. Thus, if
scale-free power spectra typical for the multi-scale portion ofthe time series are considered at the smallest possible scale,
the observed time series, but are incapable of relating thenthey do not allow embedding in any finite dimension. To
to the specific global features of the actual magnetospheriextract the large-scale regular component from the time se-
dynamics and variations in the solar wind input. The goalries, the ensemble averaging over a numbéN{ of near-
of our work is to combine the global and multi-scale fea- est neighbors, which defines the range of scales affected
tures of the solar wind-magnetosphere coupling in a singleéby noise inD-dimensional embedding space, is carried out.
data-derived model. For this purpose we combined the deterfhis smoothes away the small- scale high dimensional com-
ministic methods of nonlinear dynamics with the distribution ponent and unfolds the trajectories of the averaged system
function technique of statistical physics. In this paper wein D-dimensional embedding space. The higher the value
analyzed to what extent the magnetospheric dynamics canf NN, the wider the range of scales which are smoothed
be predicted with the use of the low dimensional dynami-away and the smaller the effective dimensiorof the aver-
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aged system. Thus, a single set of parametBrs\(N) cor- multi-scale component.
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