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Abstract. The solar wind-magnetosphere coupling during
substorms exhibits dynamical features in a wide range of spa-
tial and temporal scales. The goal of our work is to combine
the global and multi-scale description of magnetospheric dy-
namics in a unified data-derived model. For this purpose we
use deterministic methods of nonlinear dynamics, together
with a probabilistic approach of statistical physics. In this
paper we discuss the mathematical aspects of such a com-
bined analysis. In particular we introduce a new method of
embedding analysis based on the notion of a mean-field di-
mension. For a given level of averaging in the system the
mean-filed dimension determines the minimum dimension of
the embedding space in which the averaged dynamical sys-
tem approximates the actual dynamics with the given accu-
racy. This new technique is first tested on a number of well-
known autonomous and open dynamical systems with and
without noise contamination. Then, the dimension analysis
is carried out for the correlated solar wind-magnetosphere
database usingvBS time series as the input andAL index as
the output of the system. It is found that the minimum em-
bedding dimension ofvBS − AL time series is a function of
the level of ensemble averaging and the specified accuracy
of the method. To extract the global component from the ob-
served time series the ensemble averaging is carried out over
the range of scales populated by a high dimensional multi-
scale constituent. The wider the range of scales which are
smoothed away, the smaller the mean-field dimension of the
system. The method also yields a probability density func-
tion in the reconstructed phase space which provides the ba-
sis for the probabilistic modeling of the multi-scale dynam-
ical features, and is also used to visualize the global por-
tion of the solar wind-magnetosphere coupling. The struc-
ture of its input-output phase portrait reveals the existence
of two energy levels in the system with non-equilibrium dy-
namical features such as hysteresis which are typical for
non-equilibrium phase transitions. Further improvements in
space weather forecasting tools may be achieved by a combi-
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nation of the dynamical description for the global component
and a statistical approach for the multi-scale component.
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1 Introduction

The magnetospheric dynamics during substorms exhibits
both globally coherent and multi-scale features. The globally
coherent behavior of the magnetosphere is evident in such
large-scale phenomena as the formation and ejection of plas-
moids, the recovery of the field lines from the stretched to a
more dipole-like configuration, the formation of global cur-
rent systems, etc. At the same time, a number of small-scale
phenomena observed during substorms, such as MHD turbu-
lence, bursty bulk flows, current disruption, etc., are multi-
scale in nature; viz. they have broad band power spectra in
a wide range of spatial and temporal scales. The traditional
approach of modeling the magnetospheric dynamics is the
first principal approach which explicitly takes into account
the nature of all forces in the system and then derives its col-
lective behavior by considering interactions on the scales de-
termined by the model. However, it is well recognized now
that the collective behavior of a large number of complex
many-body systems is determined by only generic dynamical
features such as the range of interaction forces, dimension-
ality, and the nature of the order parameter. The dynamical
models of such systems can be derived directly from data us-
ing general principals of nonlinear dynamics and statistical
physics. The clear advantage of such data-derived models is
their ability to reveal inherent features of dynamics, even in
the presence of complexity and strong nonlinearity. More-
over, in many cases they still yield more accurate results and
require much less computational power than the first princi-
pal models.
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The earlier dynamical models of magnetospheric activity
were motivated by the global coherence indicated by the ge-
omagnetic indices and inspired by the concept of dynamical
chaos. They were based on the assumption that the multi-
scale spectra of observed time series are mainly attributed to
the nonlinear dynamics of a few dominant degrees of free-
dom (see reviews: Sharma, 1995; Klimas et al., 1996). The
dimension analyses ofAE time series gave evidence of low
effective dimension in the system (Vassiliadis et al., 1990;
Sharma et al., 1993). Further elaboration of this hypothe-
sis resulted in creating space weather forecasting tools based
on local-linear filters (Price et al., 1994; Vassiliadis et al.,
1995; Valdivia et al., 1996), data-derived analogues (Klimas
et al., 1997; Horton et al., 1999), and neural networks (Her-
nandes et al., 1993; Gleisner and Lundstedt, 1997; Weigel
et al., 2002). The low dimensional organized behavior of
the magnetosphere on global scales is also evident in many
in situ observations of the large-scale features of substorms
by many spacecrafts including INTERBALL and GEOTAIL
missions (Petrukovich et al., 1998; Nagai et al., 1998; Ieda et
al., 1998).

However, the subsequent studies have shown that not all
aspects of magnetospheric dynamics during substorms con-
form to the hypothesis of low dimensionality and thus cannot
be accounted for within the framework of dynamical chaos
and self-organization. For example, the power spectrum of
AE index data (Tsurutani et al., 1990) and magnetic field
fluctuations in the tail current sheet (Ohtani et al., 1995) have
a power-law form typical for high dimensional colored noise.
Prichard and Price (1992) have argued that by using a mod-
ified correlation integral (Theiler, 1991), a low correlation
dimension cannot be found for the magnetospheric dynam-
ics. Moreover, detailed analyses (Takalo et al., 1993, 1994)
have shown that the qualitative properties ofAE time se-
ries are much more similar to the bicolored noise than to the
time series generated by a low dimensional chaotic system.
It was also shown (Ukhorskiy et al., 2002a) that the low di-
mensional dynamical models leave out a significant portion
of the observed time series which is associated with high di-
mensional multi-scale dynamical constituent.

One interpretation of these multi-scale aspects of magne-
tospheric dynamics was a multifractal behavior generated by
intermittent turbulence (Borovsky et al., 1997; Consolini et
al., 1996; Angelopoulos et al., 1999). Another approach to
magnetosphere modeling is based on the concept of self-
organized criticality (SOC). SOC was first introduced by
Bak et al. (1987), who claimed that in “sand-pile” cellular
automata the “criticality” (power distribution of avalanches
which conduct the energy transport in the system) arises
spontaneously without tuning of the control parameters. In
SOC models the multi-scale features of substorms were re-
produced by a “sand-pile” or other non-equilibrium cellular
automata which explicitly take into account the large num-
ber of degrees of freedom in the system and the interactions
among them on different scales (Consolini, 1997; Uritsky
and Pudovkin, 1998; Watkins et al., 1999, 2001; Takalo et
al., 1999; Chapman and Watkins, 2001; Uritsky et al., 2002).

However, it was shown (Vespignani and Zapperi, 1998) that
in order for the system to achieve criticality, the fine tuning
of control parameters is required. In the cellular automata
models, like “sand-pile” or “forest fire” models, the fine tun-
ing corresponds to the vanishing values of input parameters.
This makes these systems effectively autonomous and thus
questions the relevance of the SOC framework to the mag-
netosphere, whose dynamics is, to a large extent, driven by
the solar wind input. Moreover, original SOC models gener-
ally cannot account for the large-scale coherent features of
the magnetosphere, since in most SOC models the multi-
scale properties of the system are essentially independent
of the global dynamics. To reconcile the multi-scale fea-
tures with the global dynamics in a SOC-like model, the
“sand-pile” model with the modified dynamical rules was
proposed (Chapman, 2000; Chapman et al., 2001). In this
model the scale-invariant avalanches were found to coexist
with system-wide large-scale events. However, since such
system-wide avalanches were found only in the “sand-pile”
models with a vanishing rate of the energy input, this still
cannot account for the specific global features of the actual
magnetospheric dynamics. The SOC concept generalized for
continuous systems (Lu, 1995) was further elaborated in the
MHD model of the magnetospheric plasma sheet driven by a
noise-like input (Klimas et al., 2000). However, the SOC
regime in this model was achieved by assuming the spe-
cific form of the time dependence of the diffusion coefficient,
whose relevance to the real magnetospheric plasma sheet is
still an open question. On the other hand, it was also noted
(Chang, 1999, 2000) that the properties of the criticality in
SOC and in forced SOC models are very similar to those of
the critical point in phase transitions.

In the physics of phase transitions, it is well known that
the multi-scale behavior can naturally coexist with global dy-
namics. There are two different types of phase transitions
which are intimately related to each other and coexist in a sin-
gle system. The global dynamics of the system corresponds
to the low dimensional manifold (coexistence surface) in the
phase space of the system, which separates different phases
of matter like the “pressure-temperature-density” surface in
the case of a liquid-gas system. Due to the slow changes in
the control parameters the state of the system evolves along
the coexistence surface to the point where its stability is lost
and it jumps to the state with lower energy through the first
order phase transition. In first-order phase transitions one
or more of the first derivatives of the appropriate thermody-
namic potential (e.g. free energy) are discontinuous. The
singular point of the coexistence surfaces where the order
parameter (e.g. density in liquid-gas transitions, magneti-
zation in ferromagnets) vanishes corresponds to the second
order phase transitions and is called the critical point. At the
critical point the first derivative of the thermodynamic poten-
tial is continuous while the second order derivative breaks.
The approach to the critical point corresponds to an increase
in fluctuations of the control parameter. At the critical point
the fluctuations are scale-invariant and the correlation length
(the size of the maximum fluctuation) diverges according to
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the power law. It is worth noting that the fluctuation growth
is not restricted only to the critical point vicinity. Indeed, the
order parameter can exhibit fluctuations in a wide range of
scales during the first order phase transitions as well, such as
the growth of steam bubbles in boiling water. The more fun-
damental difference between the first and second order phase
transitions is that during the former, the symmetry in the sys-
tem is preserved, while during the later the symmetry breaks
down (Stanley, 1971; Landau and Lifshitz, 1976). Phase
transitions in natural, non-autonomous systems are essen-
tially dynamic and non-equilibrium, resulting in additional
properties such as hysteresis and dynamical critical expo-
nents (Charkrabarti and Acharyya, 1999; Zeng et al., 1999;
Hohenberg and Halperin, 1977).

The magnetospheric dynamics during substorms shares
a number of properties with the dynamic non-equilibrium
phase transitions (Sitnov et al., 2000; Sharma et al., 2001;
Sitnov et al., 2001). In particular, using the global singular
spectrum analysis ofvBS −AL data Sitnov et al. (2000) have
shown that the global magnetospheric dynamics is organized
in a manner similar to the “pressure-temperature-density” di-
agram of the water-steam system. It was also suggested that
the multi-scale properties of the data can be attributed to the
dynamics in the critical point vicinity, i.e. second order phase
transitions. Sitnov et al. (2001) also established the relation
between the magnitude of the largest fluctuations ofAL time
derivative and the solar wind parameters similar to the input-
output critical exponentβ. The phase transition-like behav-
ior was also found in other substorm signatures. In particu-
lar, it has been noted (Consolini and Lui, 1999) that the cur-
rent disruption is similar to the second order phase transition.
Consolini and Michelis (2001) proposed the cellular automa-
tion model of solar wind-magnetosphere coupling based on a
revised forest-fire model (Drossel and Schwabl, 1992). The
model has a repulsive fixed point similar to the critical point
in phase transitions. The model was driven by the chaotic
time series with the spectral properties of solar wind. It was
found that the power spectrum of the integrated output has
the broken power-law shape similar to theAE index spec-
trum and that the relaxation phenomena occurred as sporadic
localized events similar to BBF.

The phase transition analogy clearly provides a framework
for understanding the magnetospheric dynamics in which the
global and multi-scale processes coexist. This also led to
a new approach to the data-derived modeling of the solar
wind-magnetosphere coupling that combines the methods of
nonlinear dynamics and statistical physics (Ukhorskiy et al.,
2002b). In the present paper we discuss the mathematical
aspects of such a combined analysis. One of the central con-
cepts of this analysis is the notion of mean-field dimension.
For the given level of averaging in the system (the number
of points in the phase space involved in the averaging) the
mean-field dimension determines the minimum dimension of
the embedding space in which the averaged dynamical sys-
tem approximates the actual dynamics with the given accu-
racy (noise level). This also yields the distribution function
in the reconstructed phase space which provides the basis

for the probabilistic modeling of the multi-scale dynamical
constituent. Previous analysis (Ukhorskiy et al., 2002a) has
shown that dynamical models are very similar to the mean-
field approach in phase transitions, since their outputs are ob-
tained by averaging over the chosen range of scales in the re-
constructed input-output phase space. Thus, the multi-scale
features of the time series not captured by the low dimen-
sional models are essentially the deviations of the data from
the mean-field model. According to the phase transition anal-
ogy, the magnitudes of these fluctuations may be related to
the solar wind input in a probabilistic fashion similar to the
input-output critical exponent. The question is to what ex-
tent the magnetosphere can be described as a deterministic
system and at what point the probabilistic consideration is
necessary. In this paper we address this question with the use
of the delay embedding analysis of avBS − AL time series.
We introduce a new technique of estimating the minimum
embedding dimensions of input-output dynamical systems in
the presence of a stochastic component.

It is now recognized that if all interaction scales are taken
into account, the magnetosphere cannot be considered as a
low dimensional system. However, introducing the proba-
bility density function on the attractor and performing the
ensemble averaging in the embedding space leads to the
smoothing of the small-scale high dimensional component.
Such averaged system has a finite dimension and thus allows
for a deterministic description. The dynamical model built
into the embedding space of the averaged system yields the
regular component of the observed time series. The portion
of the time series not captured by the low dimensional model
corresponds to the high dimensional constituent, which is
smoothed away after the ensemble averaging and may be
treated as noise from the dynamical modeling point of view.
It is also found that the delay embedding of the time series
containing a high dimensional constituent is not unique in
the sense that there is a continuum of ways of extracting the
coherent portion from the observed time series. A particular
choice of the embedding parameters sets the complexity of
the resultant dynamical model, viz. the dimension of the em-
bedding space, and the permissible noise level. The higher
the complexity is, the smaller the noise level in the system,
but the larger the amount of data and thus the greater the com-
puting power needed for constructing the dynamical model
of the system. In addition to the embedding space parame-
ters, the new technique presented in this paper also yields an
estimation of the probability density function in the recon-
structed phase space. Its moments yield the average dynam-
ical properties of the system, while its evolution with input
parameters gives a full description of the collective behavior
in the system. Thus, it can be used to model and forecast
the high dimensional portion of the observed dynamics not
predicted by low dimensional deterministic models.

The next section discusses the methods of determining the
minimum embedding dimensions and the necessity of intro-
ducing a new method in the case of the time series with a
high dimensional component or noise. Then, we describe the
method and its applications to different dynamical systems.
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Fig. 1. Structure of an input-output system.

In Sect. 3 the embedding analyses of theAL − vBS time se-
ries are presented and the application of the probability den-
sity function to the study of the global constituent in the solar
wind-magnetosphere coupling is discussed. The last section
presents the main results of the paper and their implications
to magnetospheric modeling.

2 Estimating the embedding dimension

A large portion of the magnetospheric dynamics is driven by
the solar wind input. Therefore, the method of estimating
the minimum embedding dimensions of thevBS − AL time
series should be valid for non-autonomous systems. More-
over, the examination of the multi-scale properties of the so-
lar wind-magnetosphere coupling showed (Ukhorskiy et al.,
2002a) that the multi-scale constituent of theAL time se-
ries has dynamical and statistical properties similar to those
of the colored noise. One of the possible origins of this
multi-scale portion ofAL is the scale-invariant constituent
of its driver,vBS (Freeman et al., 2000; Hnat et al., 2002).
Thus, it is required that the method is also valid for the ran-
dom systems, where dynamics is driven by a random process
(Arnold, 1998).

There has been much work on determining the embedding
dimensions of the time series generated by autonomous dy-
namical systems in the absence of dynamical noise (see re-
view: Abarbanel et al., 1993). The methods developed for
estimating the minimum embedding dimension are grounded
on Takens’ embedding theorem (Takens, 1981; Sauer et al.,
1991), and most of them use the ideas of the false nearest
neighbors technique (Kennel et al., 1992; Cao, 1997). Later,
a number of works discussed the theoretical foundations of
the delay embedding of the input-output time series (Cas-
dagli, 1993; Stark et al., 1996). This led to the generaliza-
tions of the existing method for the case of non-autonomous
dynamical systems (Rhodes and Morari, 1997; Cao et al.,
1998). Recently, considerable attention was drawn to the em-
bedding analyses of the time series generated by random dy-
namical systems (Muldoon et al., 1998; Stark, 2001). How-
ever, these methods are not applicable to the magnetospheric
time series analysis, since they generally cannot distinguish
between the pure noise and a low dimensional time series
with noise contamination. Thus, for estimating the embed-
ding dimension of thevBS − AL time series a new approach
is required. In the following we discuss a new method for es-
timating the delay embedding parameters of random dynam-
ical systems. The method is applicable to both autonomous
and open systems, and therefore, for the sake of general-

ity, the description will be given for the case of the input-
output time series. In the case of a noise-free dynamical sys-
tem, whose evolution is given by a finite set of coupled ordi-
nary differential equations, the observed time series data is a
function only of the state of the underlying system and con-
tains all the information necessary to determine its evolution.
Thus, if a space large enough to unfold the dynamical attrac-
tor is reconstructed from the time series and the present state
of the system is identified, then the dynamics of the system
can be inferred from the known evolution of similar states.
The phase space can be reconstructed by a delay embedding
method which provides the unique correspondence between
the original dynamics and the dynamics in the embedding
space. The embedding theorem (Takens, 1981) states that in
the absence of noise, ifM ≥ 2N+1, thenM-dimensional de-
lay vectors generically form an embedding of the underlying
phase space of theN -dimensional dynamical system. In the
case of non-autonomous systems (Fig. 1) theM-dimensional
embedding space is formed by the input-output delay vec-
tors:

(IT
t ,OT

t ) =

(It , It−1, ..., It−(MI −1), Ot ,Ot−1, ..., Ot−(MO−1)), (1)

whereIt = I (t),Ot = O(t), M = MI + MO . If the delay
matrix A is defined as:

A =


IT

0 , OT
0

.

.

.

IT
Nt , O

T
Nt

 (2)

C = AT A; Cvk = w2
kvk ∈ RM , k = 1, ..., M, (3)

then C is the covariance matrix. SinceC is Hermitian by
definition, its eigenvectors{vk} form an orthonormal basis
in the embedding space. Vectors{vk}, which are referred to
as principal components, are usually calculated by using the
singular value decomposition (SVD) method, according to
which anyM × Nt matrixA can be decomposed as:

A = U · W · VT
=

r∑
k=1

wk · uk ⊗ vk, (4)

where

V = (v1, ..., vM), U = (u1, ..., uM),

W = diag(w1, ..., wM), w1 ≤ w2 ≤ ... ≤ wM

U · UT
= 1, V · VT

= 1.

The set of all delay vectors forms an irregular cloud inRM .
If the number of delaysM is greater than the minimum di-
mension required for the delay embedding of the observed
time series, then there are directions inRM into which this
cloud does not extend. In this case the singular spectrum
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Fig. 2. Graphical representation of determining the embedding parameters of the observed time series.

analysis helps to find the subspace relevant for constructing
the dynamical model of the system (Broomhead and King,
1986). The eigenvaluesw2

k are the squared lengths of the
semi-axes of the hyper-ellipsoid which best fit the cloud of
data points and the corresponding eigenvectors,vk, give the
directions of the axes. The most relevant directions in space
are thus given by the principal components corresponding
to the largest eigenvalues. Therefore, instead of the input-
output delay vector (1) in the embedding space, its projection
on the firstD principal components:

xt = (IT
t , OT

t ) · (v1, ..., vD), (5)

whereD is the minimum embedding dimension, yields a bet-
ter representation of the system. In this case, ifM is substan-
tially greater thanD, small variations ofMI andMO do not
change the state of the system. For simplicity, all calculations
in this paper are performed withMI = MO .

If the embedding procedure is properly performed, that is,
if the attractor of the system was completely unfolded, then
reconstructed states,xn, have a one-to-one correspondence
with the states in the original phase space and thus can be
used for construction of the dynamical model of the system
(Farmer and Sidorowich, 1987; Casdagli, 1989, 1993; Sauer,
1993). For this purpose it is assumed that the underlying dy-
namics can be described as a nonlinear scalar map (6), which
relates the current state to the manifestation of the following
state regarding the output time series value at the next time
step. The unknown nonlinear functionF is approximated
locally for each step of the map by the linear filter:

Ot+1 = F(xt ) ≈ F(x̃t ) + αt · δxt , (6)

wherex̃t is the expansion point. Filter coefficients are cal-
culated using the known data, referred to as the training set,
which is searched for the states similar to the current, that
is, the states that are closest to it, as measured by the dis-
tance in the embedding space defined using the Euclidean
metric. These states are referred to as nearest neighbors.

Strictly speaking, the choice of the expansion point is some-
what arbitrary and may be different for different applications.
For chaotic time series forecasting in autonomous dynamical
systems Sauer (1993) suggested that better predictability is
achieved when the average state vector ofNN nearest neigh-
borsxk, which is also called the center of mass, is taken as
the center of expansion:

xcm
t =

1

NN

NN∑
k=1

xk, xk ∈ NN. (7)

It may appear that choosing a particular center of the expan-
sion is an auxiliary procedure that leads only to some in-
crease in the accuracy of the model. However, it was shown
(Ukhorskiy et al., 2002a) that, in the case of the Earth’s
magnetosphere, and presumably for a large class of non-
autonomous real systems, the expansion about the center of
mass may be essential for modeling the system’s dynamics
with the use of local-linear filters. It allows for a separa-
tion of the regular dynamical constituent, stabilizes the pre-
diction algorithm, and provides the basis for modeling the
multi-scale dynamical features. It was also shown that, for
the purpose of the long-term prediction, the right-hand side
of the model (6) can be reduced to its zeroth term, i.e. the
arithmetic average of the outputs corresponding to a one step
iterated nearest neighbors equation:

O
mf

t+1 = F(xcm
t ) = 〈Ok+1〉, xk ∈ NN. (8)

As will be shown later, using the center of mass also plays
a central role in estimating the minimum embedding dimen-
sions of the time series generated by random dynamical sys-
tems.

In the case of a low dimensional coupled dynamical sys-
tem the minimum embedding dimension of its time series
can be easily inferred directly from data by determining the
space where all false crossings of the orbits, which arose by
virtue of having projected the attractor into a low dimen-
sional space, that was too low, disappear. In the original false
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Fig. 3. Distribution functions ofDn calculated withNN = 3 for the time series generated by different autonomous dynamical systems. In
all three casesMI = M +O = 50. Grey arrows show possible choices of the embedding space dimension.(a) Lorenz attractor (dt = 0.01).
Distribution function rapidly drops to zero atD = 3 − 4. (b) Mackey–Glass delay-differential equation (dt = 0.1). Distribution function
drops to zero atD = 6 − 7. (c) 1/f -noise generator. The power shape of the distribution function indicates the absence of finite embedding
dimensions.

nearest neighbors method (Kennel et al., 1992), as well as
in its generalized versions (Cao, 1997; Rhodes and Morari,
1997; Cao et al., 1998), this is done by examining whether
a given state of the system and the state which was identi-
fied as its closest neighbor are nearest neighbors by virtue
of the projection into a low dimensional space that was too
low. The minimum dimension is assessed by examining all
points of the attractor in dimension one, then dimension two,
etc., until there are no incorrect or false neighbors remain-
ing. This approach works well for determining the minimum
embedding dimension of the time series generated by a wide
class of autonomous and open systems in which dynamics is
not subjected to noise. However, this method is not applica-
ble to the time series generated by dynamical systems which
exhibit randomness.

Let us consider the dynamics of a low dimensional system
in the embedding space (assuming that the embedding pro-
cedure was performed correctly). In the absence of noise all
attractor’s trajectories lie on a smooth manifold. The dynam-
ics of the system is coherent and have the same properties
on all scales, starting at the largest scale given by the size
of the attractor and ending at the smallest scale given by the
number of data points in the training set. No two trajecto-
ries can intersect in this case, and any two states of the sys-
tem can be resolved. Such system has a fixed dimension at
all scales, defined by the dimension of the space which pro-
vides the embedding of the manifold containing the dynam-
ical attractor. This picture considerably changes when noise
is introduced in the system. The effect of noise is somewhat
similar to a diffusion. It destroys the coherence of the dynam-
ics on small scales, smearing the attractor points around the

manifold containing “clean” dynamics. Moreover, the delay
embedding in its original sense does not exist in this case,
since there is no smooth manifold containing the dynamical
trajectories in any finite dimension. States of the system ly-
ing within the range of scales affected by noise cannot be
resolved. Thus, in this case any method similar to the false
nearest neighbors, which examines the structure of the attrac-
tor on the smallest possible scale, will indicate that the sys-
tem is high dimensional and a proper embedding has not been
achieved. However, if the small-scale dynamical constituent
affected by noise is smoothed away, then the averaged system
allows for delay embedding. In random systems the range
of scales in the embedding space, affected by noise depends
on the noise amplitude, the inherent properties of the system
and the embedding space dimension. Thus, embedding of the
time series generated by random systems should be consid-
ered as a procedure of choosing the embedding space as well
as determining the range of scales in this space which has to
be smoothed away. In other words, introducing a probability
density function on the attractor corresponding to the partic-
ular dimension of the embedding space and performing the
ensemble averaging yields the smooth manifold which con-
tains the coherent portion of the observed time series.

For a time series not contaminated by noise the criterion
for a good embedding can be stated as follows. If two states
xk andxn, are close in the embedding space, then according
to Eq. (6) the values of a one step iterated scalar time series
corresponding to these states,Ok+1 andOn+1, should also
be close. In the case of random dynamical systems this is
not necessarily true, since on small scales the coherence
in system’s dynamics might be destroyed by noise. In this
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case it is essential to not only find the dimension, but also
to determine the range of scales in this space which is
populated by high dimensional dynamics and thus needs
to be smoothed away. For that we suggest to substitute the
above criterion by the following approach. Let us consider
two statesxn and xk, of the random system in the space
formed by the firstD eigenvectors of the covariance matrix
{vk|k = 1, ..., D}, together with the sets of their nearest
neighbors identified with the use of a Euclidean metric
in this space. By analogy with the noise-free dynamical
systems we consider this space to be an embedding space
of the underlying dynamics, if there is anNN such that
the following criterion is satisfied for any two states of the
system:

if ‖ xcm
n − xcm

k ‖→ 0 then |O
mf

n+1 − O
mf

k+1| → 0, (9)

where the center of mass vectors are given by Eq. (7). This
condition provides that the functionF in Eq. (8) is well de-
fined, i.e.xcm

k = xcm
n wheneverOmf

k+1 = O
mf

n+1.
According to this definition the embedding procedure con-

sists of finding two parameters,D andNN . If such parame-
ters are defined, then a dynamical model of the system can be
introduced in the form of Eq. (9). Averaging overNN near-
est neighbors defines the smooth manifold of dimensionality
D or smaller that can be fit locally to the data and then used
to interpolate the dynamics of the system. As will be shown
later for many random systems the choice ofD andNN is
not unique. In such casesD is usually a decreasing func-
tion of NN , the higher theD, the smaller theNN required
for the embedding. The particular choice of the embedding
parameters should be justified in each particular case by the
accuracy of the dynamical model. The higher theNN , the
stronger the averaging introduced into the system and thus,
a larger portion of the time series is considered to be noise
from the dynamical model point of view. However, it turns
out that a decrease inNN does not always lead to an increase
in the model’s accuracy, and thus, for modeling purposes it is
not always preferable to minimize it. Moreover, a decrease
of NN in many cases leads to a growth ofD which is nec-
essary for a good embedding, which increases the amount of
data needed and computational power required for construct-
ing the model.

For calculation purposes the criterion (9) can also be for-
mulated in the following way (see Fig. 2). AD-dimensional
space is considered to be an embedding space, if there is a
numberNN such that for all pointsn from the data set the
inclusion of the statexn in the set of its nearest neighbors
does not considerably change the value of the average of the
outputs corresponding to a one step iterated nearest neigh-
bors equation. In other words:

‖ xcm
n − x̃cm

n ‖→ 0 H⇒ |O
mf

n+1 − Õ
mf

n+1| → 0

xcm
n =

1

NN

NN∑
k=1

xk, x̃cm
n =

1

NN
(xn +

NN−1∑
k=1

xk), xk ∈ NN. (10)

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Distribution functions ofDn calculated withNN = 3 and
MI = MO = 50 for the time series generated by the synchronized
Lorenz attractor. Distribution function drops rapidly to zero around
D = 4.

Thus, for determining the optimal embedding parameters
D andNN the following algorithm is proposed. First, the
parameterNN is fixed at some small value. Then, for each
point (In,On) of the input-output time series the conditions
of criteria (10) are considered in dimension one, then dimen-
sion two, etc., until they are satisfied in some dimensionDn.
In other words we seek for:

min Dn : |O
mf

n+1 − Õ
mf

n+1| < ε, (11)

whereε is some small number which sets the precision in
the system. Quantities differing by less thanε are consid-
ered to be identical within the permissible accuracy. When
Dn is found for all points in the training set, the probability
distribution ofDn is calculated. If the system has a finite em-
bedding dimension for a chosen value ofNN , then the dis-
tribution function will drop to zero at this value. If there is
no finite embedding dimension for this value ofNN , the dis-
tribution function has a power-law dependence. In this case
NN is increased and the whole procedure is repeated until a
finite dimension is found. Then, for all pairs of parameters
(NN, D) the dynamical models (8) are calculated and their
outputs are compared. The parameters which yield the high-
est accuracy of the model are considered as optimal. The
delay embedding of the input-output time series generated
by systems with a random component follows from dynam-
ical systems theory based on Takens’ embedding theorem.
However, this technique of determining the embedding pa-
rameters is very similar to the methods known in statistical
physics. This recognition can be used as a link between the
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(a) (b) 

Fig. 5. Distribution functions ofDn calculated withNN = 3 andMI = MO = 50 for the time series generated by the synchronized Lorenz
attractor with 1/f -noise contamination.(a) Small noise amplitude (ε = 0.5 > σ1/f = 0.4). Distribution function drops rapidly to zero at
D = 4. (b) Large noise amplitude (ε = 0.5 � σ1/f = 15). The power shape of the distribution function indicates the absence of finite
embedding dimensions at the small scales.

deterministic and probabilistic approaches to modeling the
collective behavior in random systems. It was pointed out
earlier (Ukhorskiy et al., 2002a) that the dynamical model (8)
is very similar to the mean-field approach in thermodynamics
(e.g. Kadanoff, 2000), since its output is obtained by the av-
eraging over the chosen range of scales in the reconstructed
phase space. For that the reconstructedD-dimensional space
is divided into the equal-probability clusters centered on ev-
ery point of the data set. The size of the cluster is defined
by the radiusR of a sphere containing the set ofNN near-
est neighbors. This defines the fixed-probability partition of
the phase space, which consists of a large number of over-
lapping clusters, all containing the same number of points
but having different spatial sizes. Thus, after parametersD

andNN are found the probability density function of sys-
tem states in the embedding space can be estimated using the
K-nearest-neighbor approach (Bishop, 1995):

ρ(x) =
A

R(x, NN)D
, (12)

where the constantA is defined by the normalization condi-
tion. To obtain the model output the average is taken only
over the states within a given cluster, while the states outside
this cluster are considered to be independent and, therefore,
do not contribute to the output. In other words, the output of
the mean-field model (8) is calculated by taking the ensemble
averaging with the use of the distribution function (12). From
this point of view, the method presented here for determin-
ing the embedding parameters has another very transparent
meaning. It assures that in the reconstructed phase space the
ensemble averaging is well defined, viz. the average parame-
ters are close to the exact parameters of the system. This also
means that the mean-field approach is valid for the descrip-
tion of the collective behavior of the system.

Thus, the presented method can be considered as a tech-
nique of determining the mean-field dimensions of random
dynamical systems, since it yields the parameters of the
mean-field dynamical model, even when the embedding in
its original sense does not exist, i.e. the system is high di-
mensional at small scales and, therefore, does not allow
for the exact deterministic consideration. Before proceed-
ing with the mean-field dimension analysis of the magneto-
spheric dynamics we test this method on several well-known
autonomous and open dynamical systems, with and without
noise. As was mention before, the calculations are not sensi-
tive to the variations in the number of input and output delays
in (1). All embedding analyses in this paper were carried out
for MI = M0 = 50, and the delay time is equal to the sam-
pling time of the time series.

2.1 Autonomous dynamical systems

In this section we determine the embedding dimensions of
the time series generated by several autonomous dynamical
systems like, Lorenz differential equations, Mackey–Glass
delay differential equation, and 1/f -noise generator.

2.1.1 Lorenz attractor

We consider the Lorenz equations (Lorenz, 1963): ẋ(t) = σ · (y − x) σ = 10
ẏ(t) = r · x − y − x · z r = 8/3
ż(t) = −b · z + x · y b = 28.

(13)

At the given values of parameters the system produces
chaotic dynamics. The time evolution in the phase space
is organized by two unstable foci and an intervening sad-
dle point. The Lorenz attractor is a fractal set lying on the
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smooth manifold embedded in three-dimensional Euclidean
space. After solving the set (13) with the foorth-order Runge-
Kutta, method with integral step 0.01 we apply our method
of estimating mean-field dimensions to thex(t) time series.
Since there is no noise in the system, the reconstructed dy-
namical attractor should be similar to the original one and
thus should have a fixed dimension on all scales. Therefore,
the technique is expected to assess the minimum embedding
dimension without a significant ensemble averaging. The
distribution function ofDn obtained forNN = 3 is shown
in Fig. 3a. It drops to zero rapidly atD values from 3 to 4,
and, therefore, according to our method, theseD = 3 − 4
are the good choices for the embedding dimensions of ax(t)

time series.

2.1.2 Mackey–Glass equation

As another example of a low dimensional dynamical system
we consider the Mackey–Glass delay-differential equation
(Mackey and Glass, 1977)

ẋ(t) =
a · x(t − τ)

1 + xc(t − τ)
− b · x(t). (14)

The Mackey-Glass equation is, in principal, infinite-
dimensional, in the sense that a future value depends on a
continuum of past values. It was shown, however, that for
the parameter values ofa = 0.2, b = 0.1, c = 10, and
τ = 30 the system becomes chaotic with a fractal dimension
of about 3.6 (Meyer and Packard, 1992). The equation was
solved with the fourth-order Runge-Kutta method, with inte-
gral step 0.1. The embedding analyses showed that at these
parameter values the dynamical attractor can be embedded
in 6-dimensional space (Mead et al., 1992). As in the case
of the Lorenz attractor, no averaging is required to determine
the minimum embedding dimension. ForNN = 3 theDn

distribution function rapidly drops to zero atD, to about 6–7
(Fig. 3b), and, therefore, good choices for embedding dimen-
sion areD = 6 or 7.

2.1.3 1/f -noise

To illustrate what happens if the above analysis is applied to a
high dimensional system, we consider the 1/f -noise time se-
ries, viz. the time series produced by a random number gen-
erator, where the power spectrum drops with an increase in
frequency as 1/f . TheDn distribution function calculated for
NN = 3 is shown in Fig. 3c. The distribution function has
a power dependence onD in the wide range of dimensions
(D = 1−100). This indicates that for the given averaging the
system does not have a finite mean-field dimension. Since
in this case almost no averaging was done (NN = 3), the
power shape of the distribution function also means that the
observed time series does not allow for the delay embedding
in the sense of the original noise-free embedding theorem.

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

        NN=3 
        NN=50 
        NN=100
       NN=300

D(NN=50) 

D(NN>100) 

Fig. 6. Distribution functions ofDn calculated withε = 0.5 and
different values ofNN for the time series generated by the synchro-
nized Lorenz attractor with 1/f -noise contamination (σ1/f ). For
differentNN the distribution function drops to zero at different val-
ues ofD. The mean-field dimension decrease with the increase in
the range of scale smoothed away after the averaging.

2.2 Input-output time series

Before proceeding with the analysis of noise effects on the
delay embedding, we present an example of determining the
embedding dimensions of the input-output time series. As an
example of a non-autonomous, low dimensional dynamical
system we consider a synchronized Lorenz attractor. If the
x(t) component of one Lorenz system is used as a driver for
the second Lorenz system, then the attractors of both systems
synchronize at the following values of parameters:r = 60,
b = 8/3, σ = 10 (Pecora and Carroll, 1990), i.e. indepen-
dent of the initial conditions of the second system; after a
few steps its trajectory converges to the attractor of the driver.
Thus, theY (t) component of the second Lorenz attractor can
be considered as an output of the non-autonomous chaotic
dynamical system driven by the input –x(t) component of
the first Lorenz attractor. The distribution function ofDn

calculated forNN = 3 is shown in Fig. 4. The rapid drop in
the distribution function indicates thatD = 3 − 4 are good
choices for embedding dimensions of the input-output time
series.

2.3 Noise effects

The examples of the time series presented above were gener-
ated by low dimensional dynamical systems (except for the
1/f -noise case). Consequently, the mean-field dimensions of
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        NN=100
       NN=250

D(NN=100) 

D(NN=250) 

Fig. 7. Distribution functions ofDn calculated with different values
of NN for vBS −AL time series of Bargatze et al. (1985) database.
For differentNN the distribution function drops to zero at different
values ofD. The mean-field dimension decrease with the increase
in the range of scale smoothed away after the averaging.

these systems were determined with almost no averaging and
thus do not differ from the minimum embedding dimensions
found with the use of other methods, like the false nearest
neighbors technique. In this section we consider the effects
of noise on the embedding analysis of the observed time se-
ries. It is shown that, in the presence of a significant noise
component, the delay embedding becomes possible only af-
ter averaging the data in the reconstructed phase space. To
study the effects of noise on delay embedding we consider
the input-output time series of the synchronized Lorenz at-
tractor contaminated by a 1/f -noise time series of various
amplitudes. The noise amplitude is considered to be small
if ε > σ1/f , whereσ1/f is the variance of the noise time
series. The distribution function ofDn calculated for the
small noise contamination withNN = 3 is shown in Fig. 5a.
As can be seen from the plot the distribution function does
not differ much from the distribution function calculated for
the clean time series of the synchronized Lorenz attractor
(Fig. 4). Since almost no averaging was done, the sharp drop
in the distribution function indicates the existence of low di-
mensional embedding space (D = 3−4) at the smallest inter-
action scales. However, this low dimensional picture signif-
icantly changes when the amplitude of the noise is substan-
tially increased (ε � σ1/f ). In this case theDn distribution
function calculated forNN = 3 has a power shape similar
to the distribution function calculated for the 1/f -noise time
series (Fig. 5b, Fig. 3c). This means that in the embedding
space of any dimension the coherent, low dimensional dy-

namics of the system appears to be destroyed by the noise
within some range of scales. Thus, at small scales the dy-
namical properties of the systems are indistinguishable from
those of the noise itself. This also limits the information that
can be extracted by exploring the dynamical trajectories on
the smallest scales.

To extract more information about the system’s dynamics
and, in particular, to obtain the range of scales affected by
noise, we follow the prescription of our method and increase
the number of nearest neighbors participating in the averag-
ing. Figure 6 shows theDn distribution functions calculated
for different values ofNN . It is seen from the plots that
starting atNN = 50 the averaged systems start exhibiting a
low dimensional behavior. The particular values of dimen-
sions correspond to the minimum embedding dimensions of
the averaged dynamical systems, where the degree of aver-
aging is set byNN . The small-scale portion of the time
series which is smoothed away due to the averaging is not
embedded in this particular dimension. Therefore, the as-
sessed dimensions should be considered only as the mean-
field dimensions of the system. AtNN = 50,D = 7 and for
NN > 100,D = 4.

To distinguish the pair of parameters which is optimal for
the embedding of the observed time series we use these pa-
rameters to build a dynamical model in the form of (8). The
optimal parameters are identified as those which provide the
highest prediction accuracy of the model. Throughout this
paper the prediction accuracy of dynamical models is quan-
tified by the normalized mean squared error (NMSE) (Ger-
shenfeld and Weigend, 1993)

NMSE =
1

σO

√√√√ 1

N

N∑
k=1

(Ok − Ôk)2. (15)

Here,k = 1 to N span the forecasting interval,σO is the
standard deviation of the original output time series, and the
ˆ-symbol denotes the predicted values. The valueNMSE =

1 corresponds to a prediction of the average. For (D, NN)
of (7, 50)NMSE = 0.9 and for (4, 100)NMSE = 0.8.
Therefore, according to our method the optimal embedding
parameters (D, NN ) of the input-output time series gener-
ated by the contaminated synchronized Lorenz system are
(4, 100).

After the embedding parameters (D, NN) of the time se-
ries are determined, the probability density function on the
dynamical attractor can be introduced in the form of Eq. (12).
Since it is a distribution function in the reconstructedD-
dimensional phase space, it yields the average properties of
the system and provides the basis for a probabilistic descrip-
tion of its dynamics. Different aspects of applying the dis-
tribution function to study the evolution of the system in
the embedding space will be considered in the next sections,
where the embedding analysis of magnetospheric dynamics
is discussed.
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Fig. 8. The first three principal components ofvBS − AL covariance matrix computed withMI = MO = 32. The input (vBS ) portion of
vector is shown in yellow, while the output (AL) part is indicated by the blue color.

3 Embedding analyses of magnetospheric dynamics

Previous studies pointed out that the magnetospheric dynam-
ics has different properties at different scales. The dimen-
sion analysis ofAE data (Vassiliadis et al., 1990) showed
that the correlation dimension saturates at low values, which
indicates the global nature of substorm dynamics. It was also
shown that a large portion of theAE time series can be de-
scribed by low dimensional dynamical models (Vassiliadis et
al., 1995). However, it was also demonstrated that if all in-
teraction scales are taken into account, then theAE time se-
ries does not have a low correlation dimension (Prichard and
Price, 1992). Using the coast-line dimension analysis Sit-
nov et al. (2000) showed that the low dimensional behavior
can be derived only for the fixed range of the largest pertur-
bation scales, while the singular value spectrum of data has
a power-law shape typical for the colored noise. The sub-
sequent analyses of the multi-scale constituent ofAL also
indicated that it has dynamical and statistical properties sim-
ilar to the time series of high dimensional noise (Ukhorskiy
et al., 2002a).

The main goal of our work is to develop a comprehensive
model that can account for both global and high dimensional
constituents of the solar wind-magnetosphere coupling dur-
ing substorms. The basis of this model is provided by the em-
bedding analysis discussed in previous sections. Our method
yields the mean-field dimensions of the system that are used
for constructing low dimensional dynamical model to run it-
erative predictions of the observed time series (Ukhorskiy et
al., 2002a). Moreover, it also yields the distribution func-
tion of the high dimensional dynamical constituent in the re-
constructed phase space. In this section we show how this
distribution function can be used for studying the structure
of a low dimensional dynamical attractor and discuss its ap-
plication to probabilistic predictions of the magnetospheric
dynamics.

Previous studies of the solar wind-magnetosphere cou-
pling discussed different choices of the solar wind input pa-

rameters for the magnetospheric dynamics. For the model-
ing of AL andAU indices Clauer et al. (1981) considered
the solar wind convective electric fieldvBS , v2BS and the
solar wind coupling parameterε = vB2l20 sin4(θ/2) (Aka-
sofu, 1979). They found that the moving average linear fil-
ters based on these three inputs have the similar prediction
accuracy of 40%. Vassiliadis et al. (1995) reported that the
local-linear filters driven byvBS , vB2l20 sin4(θ/2) andvBz

yield a comparable predictability ofAL. For the predictions
of high geomagnetic activity the best results were achieved
with unrectifiedvBz input. In this study the solar wind in-
put is quantified byvBS , while the magnetospheric response
is represented by theAL index. This allows for the direct
comparison of our embedding analysis with earlier results
of Sitnov et al. (2000, 2001), obtained forvBS − AL time
series. All analyses were carried out using the correlated
database of solar wind and geomagnetic time series compiled
by Bargatze et al. (1985). The data are solar wind param-
eters acquired by IMP 8 spacecraft and simultaneous mea-
surements of auroral indices with a resolution of 2.5 minutes.
The database consists of 34 isolated intervals, which contain
42 216 points in total. Each interval represents the isolated
interval of auroral activity preceded and followed by at least
two-hour-long quiet periods (vBS ≈ 0, AL < 50 nT). Data
intervals are arranged in the order of increasing geomagnetic
activity. In order to use bothvBS andAL data in joint input-
output phase space, their time series are normalized to their
standard deviations.

To determine the mean-field dimensions of the magneto-
spheric dynamics we follow the prescription of our method
and estimate the embedding dimensions of thevBS − AL

time series after carrying out the ensemble averaging in the
embedding space. The distribution functions ofDn are cal-
culated for different values ofNN , which set the range of
scales participating in the averaging (Fig. 7). The distribu-
tion function calculated for averaging overNN = 3 has a
power-law shape. This indicates that at the finest scales the
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Fig. 9. The coherent dynamics in three-dimensional subspace spanned by the leading principal components ofvBS −AL covariance matrix.
(a) The dynamical manifold is derived with the use of the two-dimensional distribution functionρ(x1, x3) calculated for the whole Bargatze
et al. (1985) database withNN = 300. The points of the surface are associated with the maxima of the conditional probability function

ρ(x2|x1, x3) ∼= ρ(x
(k)
2 ). (b) Smoothed dynamical manifold calculated for the first 20 intervals of Bargatze et al. (1985) database by Sitnov

et al. (2001).

dynamics in the system is irregular and cannot be embedded
in a finite-dimensional space. Only after a substantial range
of scales is smoothed away (NN > 100) does the averaged
system start to exhibit a low dimensional behavior. Thus,
for NN = 100 the mean-field dimension isD = 7, and for
NN = 250,D = 3. To define which embedding parameters
are optimal for modeling the evolution of the system we con-
struct the dynamical model (8) and then calculateNMSE for
different values of (D, NN). For (3, 250)NMSE = 0.63
and for (7, 100) the error value is smaller,NMSE = 0.57.

After the optimal embedding parameters (D, NN ) are
chosen, the probability density function of the attractor states
can be estimated as Eq. (12). Since it is a distribution func-
tion in D-dimensional reconstructed phase space, it can be
used for studying the collective behavior of the system. The
global dynamics of the system is described by the moments
of the distribution function. Thus, the zeroth order term in
dynamical model (8), viz. the center of mass, is nothing
but its first moment. The distribution function can also be
used for visualizing the low dimensional component of the
solar wind-magnetosphere coupling. Earlier procedures of
visualizing the global part of the magnetospheric dynamics
(Sitnov et al., 2000; Sitnov et al., 2001) involved a num-
ber of cumbersome procedures, such as the removal of the
hysteresis loops and the smoothing of the resultant 2-D sur-
face. Our new systematic approach resolves these problems
by substituting the raw data by its probability density func-
tion in the reconstructed space, whose dimension is consis-
tent with the level of averaging and the level of noise. To
compare our results with the phase portrait obtained by Sit-

nov et al. (2001), we plot the data in three-dimensional space
given by the principal componentsv1, v2 andv3 of vBS −AL

covariance matrix. For a better comparison the principal
components were calculated for the matrices computed with
the sameMI = MO = 32 number of delays as was used
by Sitnov et al. (2001). Vectorsv1, v2 and v3 are shown
in Fig. 8. The delay vector projectionsx1 , x2 andx3 onto
v1, v2 andv3 roughly correspond to one-hour average values
of input (normalizedvBS), output (normalizedAL) and the
first time derivative of the input (for details, see Sitnov et al.,
2000). To visualize the data we usex1 − x3 projection as the
support plane, where the distribution functionρ(x1, x3) is
introduced according to Eq. (12), withNN = 300 obtained
by the mean-field dimension analysis. Then, at any given
point (x1, x3) the conditional probability function ofx2 can
be estimated as the probability density function ofx

(k)
2 cor-

responding to the nearest neighbors of that point:

ρ(x2|x1, x3) ∼= ρ(x
(k)
2 ), xk = (x

(k)
1 , x

(k)
3 ) ∈ NN. (16)

The points of conditional probability maxima calculated at
the mesh points of the regular grid set represent the surface
corresponding to the most probable states of the system in
three dimensional phase space. Such a surface calculated for
the whole Bargatze database is presented in Fig. 9a. To visu-
alize the evolution of the system along this surface we plot a
two-dimensional velocity field, viz. the average flow velocity
in a x1 − x2 plane calculated using the distribution function
ρ(x1, x2). As can be seen from the plot the structure of the
surface and the corresponding circulation flows are very sim-
ilar to those obtained by Sitnov et al. (2000). This similarity
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is even more notable, since the phase portrait on the right was
derived only for the first 20 intervals of the database, corre-
sponding to the low and medium levels of substorm activity.
At the same time, the robustness of our technique yields the
phase portrait for the whole data containing both low and
high activity intervals. The most probable substorm cycles
are confined to the two-level surface, with the fracture going
roughly along thex3 = 0 axis. Two levels of the surface can
be associated with the ground and exited states of the sys-
tem. The typical substorm cycle starts with an increase in
the average inputx1, while the average outputx2 is constant
or slowly decreasing, viz. the system is in its ground state.
At the same time the average input ratex3 first increases and
then decreases to small values. Then the output component
falls rapidly to negative values at almost constant input pa-
rameters, which corresponds to the transition to the exited
state. The recovery of the system to its ground state involves
the decrease inx1 while the magnitude ofx3 first increases
and then falls to zero values.

It was pointed out before (Sitnov et al., 2000) that both
the surface and the corresponding circulation flows are close
to the scheme of the inverse bifurcation (Lewis, 1991). This
implies that the smooth manifold underlying the global por-
tion of system’s dynamics has a folded structure known in
mathematics as a cusp catastrophe manifold (Gilmore, 1993)
and in the physics of non-equilibrium phase transitions as
a coexistence surface separating deferent states of matter
(Gunton et al., 1983). In the case of the quasi-static phase
transitions in equilibrium systems the corresponding coex-
istence surface does not have such a folded structure. In
these systems the order parameter is a single-valued func-
tion of control parameters (Fig. 10). The fold appears only
in the non-equilibrium case, when the system is driven far
from the steady-state equilibrium by the rapid changes in the
control parameters. As a result the metastable states, like
“overcooled” steam and “overheated” fluid, become possible
and depending on its dynamical history, the system may be in
two or more different states under the same set of control pa-
rameters. This dynamical phenomenon known as hysteresis
explains the observed irregular structure of the transition line
(see Fig. 9a). It also strongly complicates the reconstruction
and visualization of the global dynamical constituent (Sit-
nov et al., 2000). In the present approach this problem is
overcome with the use of the distribution function. To visu-
alize the large-scale behavior we follow the dynamics of the
distribution function maxima which is somewhat analogous
to the Maxwell convention in bifurcation theory (Gilmore,
1993) and thus establishes the parallel with the equilibrium
coexistence surface. The existence of the multiple maxima is
attributed to the dynamical hysteresis. The points on the sur-
face corresponding to the transitions between the ground and
exited states are identified by the change in the position of the
global maxima. Figure 11 shows the distribution function of
x2 calculated at three points along the cut of the surface by
thex1 = 9 plane. In all three cases it has a typical double-
peak structure which indicates the existence of hysteresis.
Figure 10 illustrates the system’s transition from the ground
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Fig. 10. The diagram of different transitions in a two-level system.
The coexistence manifold and corresponding transitions from the
ground to the exited state are shown inx1 − x3 plane. Equilibrium
transitions correspond to the straight line connecting two branches
associated with different states. The metastable states correspond to
the blue segments of the manifold. An example of a typical dynamic
transition which deviates from the equilibrium manifold is shown in
red.

to the exited state, as identified by changes in the shape of the
distribution function. According to criterion (15) the distri-
bution function in Fig. 10c corresponds to the ground state of
the system. The distribution function in Fig. 10b corresponds
to the moment when the transition to the exited state was just
made. And finally, the function in Fig. 10a corresponds to
the fully developed exited state of the system. Thus, the
distribution function and its moments can be effectively used
to predict, visualize and analyze the global portion of the so-
lar wind-magnetosphere coupling. Moreover, the description
provided by the distribution function is not restricted to the
low dimensional dynamical constituent. Indeed, if the distri-
bution function and its evolution with the input parameters
are derived from the observed time series, then, in principal,
it gives the full description of the collective behavior in the
system. The dynamics of its first moment corresponds to the
mean-field dynamical model, which yields iterative predic-
tions of the observed time series. As was discussed before
(Ukhorskiy et al., 2002a), the dynamical model leaves out
a significant portion of the dynamics. Indeed, in order to
extract the coherent component from the time series gener-
ated by a system with some randomness, the model is forced
to carry out the phase space averaging over a wide range
of scales. Therefore, the output of the model comes inher-
ently smoothed and cannot grasp the large peaks and sharpest
changes in data. As will be discussed in forthcoming publi-
cations this problem can be partially resolved with the use
of a distribution function, which yields the probabilistic de-
scription of the multi-scale dynamical constituent. It can be
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Fig. 11. Evolution of the distribution function at the different stages of substorm. Double-peak shape of the function indicate the existence
of dynamical hysteresis.(c) The dominance of the left maximum indicates that the system is in the ground state (growth phase).(b) The
equality of the maxima corresponds to the transition from the ground to the exited state (expansion phase).(a) Predominance of the right
maximum indicates that the system is in the exited stated (late expansion or early recovery phases).

used to estimate the deviation of the data from the output of
the deterministic model and thus can be used for probabilis-
tic predictions. Incorporating this distribution function in the
space weather prediction tools has important implications for
space weather forecasting.

4 Conclusions

The solar wind-magnetosphere coupling during substorms
exhibits dynamical features in a wide range of spatial and
temporal scales. The large-scale portion of the magneto-
spheric dynamics is coherent and well organized, while many
small-scale phenomena appear to be multi-scale. Most of
the contemporary approaches to the data-derived modeling
of magnetospheric substorms do not account for the coexis-
tence of global and multi-scale phenomena and thus do not
provide a complete description of the observed time series.
Low dimensional dynamical models effectively extract the
time series constituent generated by the large-scale coher-
ent behavior, but are unable to predict the features associ-
ated with high dimensional multi-scale dynamics. At the
same time, SOC-like models can reproduce a variety of the
scale-free power spectra typical for the multi-scale portion of
the observed time series, but are incapable of relating them
to the specific global features of the actual magnetospheric
dynamics and variations in the solar wind input. The goal
of our work is to combine the global and multi-scale fea-
tures of the solar wind-magnetosphere coupling in a single
data-derived model. For this purpose we combined the deter-
ministic methods of nonlinear dynamics with the distribution
function technique of statistical physics. In this paper we
analyzed to what extent the magnetospheric dynamics can
be predicted with the use of the low dimensional dynami-

cal models and at what point the statistical description is re-
quired. This question was addressed by embedding analyses
of vBS − AL time series. A large portion of magnetospheric
dynamics is driven by the solar wind input whose time se-
ries have scale-free power spectra. Thus, for its embedding
analyses we introduce a new method of determining the em-
bedding parameters of the input-output time series generated
by random dynamical systems. To test our method we used
several well-known autonomous as well as input-output dy-
namical systems, with and without noise contamination.

According to our embedding analysis, the multi-scale
properties of thevBS − AL time series are very different
from the multi-scale properties of low dimensional chaotic
systems, like the Lorenz attractor or Mackey-Glass system,
in which the scale-invariance is reconciled with low dimen-
sionality due to the fractal nature of their attractors. Due
to the scale-invariance of its driver and/or due to its own
complexity, the magnetospheric dynamics generate time se-
ries which contain a small-scale component with properties
of high dimensional colored noise. This high dimensional
constituent destroys the coherence of the system’s dynam-
ics in the phase space, smearing trajectories in some vicinity
of the manifold containing the dynamical attractor. Thus, if
the time series are considered at the smallest possible scale,
they do not allow embedding in any finite dimension. To
extract the large-scale regular component from the time se-
ries, the ensemble averaging over a number (NN) of near-
est neighbors, which defines the range of scales affected
by noise inD-dimensional embedding space, is carried out.
This smoothes away the small- scale high dimensional com-
ponent and unfolds the trajectories of the averaged system
in D-dimensional embedding space. The higher the value
of NN , the wider the range of scales which are smoothed
away and the smaller the effective dimensionD of the aver-
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aged system. Thus, a single set of parameters (D, NN ) cor-
responding to the reconstruction of the “correct” dynamical
system does not exist. The delay embedding should be seen
rather as a process of striking a balance between the level
of “noise” (the range of scales over which the averaging is
performed) and the complexity (the effective dimensionality
of the averaged system). Similar conclusions were reached
by Stark (2001) from the theoretical analysis of the delay
embedding of stochastic dynamical systems. The particular
choice of the embedding parameters should be justified in
each particular case by the accuracy the of dynamical model.
Since these embedding parameters correspond to the aver-
aged system rather than to the original time series and since
they are directly used in the mean-field model of the system,
it is more appropriate to considerD as the mean-field dimen-
sion of the system.

After the optimal embedding parameters (D, NN )
are chosen, a distribution function is introduced inD-
dimensional phase space. It evolves in time due to the varia-
tion of the input parameters. The dynamics of its first mo-
ment corresponds to the mean-field model of the system,
which describes the low dimensional portion of the observed
time series. The distribution function can also be used for
visualization of the low dimensional dynamical constituent,
even in the presence of noise and other non-equilibrium fea-
tures, such as the hysteresis phenomenon. As was revealed
by the distribution function maxima, the global constituent
of the solar-wind magnetosphere coupling resembles the dy-
namics of non-equilibrium phase transitions. When viewed
in three-dimensional subspace, given by the leading eigen-
vectors of the covariance matrix, the dynamics is organized
around the manifold similar to the “pressure-temperature-
density” coexistence surface of liquid-gas systems or to the
solution of the equilibrium Ising model of ferromagnets. The
substorm onset corresponds to the jump in the system be-
tween the points of the metastable and stable equilibrium,
similar to the first order phase transition. The typical two-
peak shape of the distribution function observed at the region
of transition indicates the existence of dynamical hysteresis
which confirms the non-equilibrium nature of the transition.

In the reconstructed embedding space the multi-scale con-
stituent of the magnetospheric dynamics is naturally coupled
to the large-scale regular component. It appears as fluctua-
tions of data around the smooth manifold containing the tra-
jectories of an averaged system, which are also described
by the distribution function. Thus, the distribution func-
tion provides the full description of the collective behavior
in the system. Its first moment describes the global portion
of the solar wind-magnetospheric coupling and thus can be
used to forecast the low dimensional trend of the observed
time series. Moreover, as will be shown in following pub-
lications, if the distribution function dependence from input
parameters is derived from data, then it can be used for pre-
dictions of the multi-scale dynamical constituent. Therefore,
further improvements in space weather forecasting tools may
be achieved by a combination of the dynamical description
for the global component and a statistical approach for the

multi-scale component.
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