
Annales Geophysicae (2003) 21: 1667–1679c© European Geosciences Union 2003
Annales

Geophysicae

Wind Speed dependence of Air-Sea Exchange parameters over the
Indian Ocean during INDOEX, IFP-99

D. Bala Subrahamanyam and Radhika Ramachandran

Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram, 695 022, Kerala, India

Received: 6 June 2002 – Revised: 24 November 2002 – Accepted: 9 February 2003

Abstract. Air-Sea exchange of momentum, heat and mois-
ture over the oceanic surface plays an important role in un-
derstanding several processes spanning various scales of at-
mospheric and oceanic motions. The present study provides
estimates of air-sea exchange parameters along the cruise
track of the Intensive Field Phase of Indian Ocean Experi-
ment (INDOEX, IFP-99) conducted on board Oceanic Re-
search Vessel (ORV) Sagar Kanya during 20 January–12
March 1999 for a large region of the Indian Ocean. The
study is aimed at acquiring a better understanding of the wind
speed dependence of air-sea interaction parameters, such as
roughness lengths for wind (z0), temperature (z0t ) and hu-
midity (z0q ), which play a key role in the determination of
the air-sea exchange coefficients and interface fluxes across
the tropical oceans. The variation of drag coefficient (CD),
sensible heat and water vapor exchange coefficients (CH and
CE), are also discussed in relation to the wind speed. An
empirical relation is derived between the estimated values
of drag coefficients and the observed values of wind speeds
for the hitherto data-sparse regions over the tropical Indian
Ocean.

Key words. Oceanography: physical (air-sea interaction)
Meteorology and atmospheric dynamics (ocean-atmosphere
interaction) – Oceanography: physical (marine meteorol-
ogy)

1 Introduction

An important component of marine meteorological research
is the determination of energy balance components at the
oceanic surface through the estimation of air-sea exchange
of momentum, heat and water vapor. Given the consider-
able area covered by the oceans on the Earth, it is of fun-
damental importance that we adequately estimate the sur-
face layer fluxes of momentum, heat and moisture. How-
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ever, the underlying physics of the exchange processes over
the rough seas are not well understood (e.g. DeCosmo et
al., 1996; Friehe and Schmidt, 1976; Smith, 1980, 1989).
The wind stress and heat flux at the sea surface were, in
general, estimated from mean wind and temperature using
“bulk” formulas (Blanc, 1985; Bradley et al., 1991; Fairall
et al., 1996; Smith, 1988). Empirical coefficients were used
to estimate fluxes from gradients using profile measurements
between two levels – one at the water surface and the other
in the air. This method had a special role because it can
be used to estimate fluxes from historical sets of marine
weather observations of the “bulk” variable (wind, humid-
ity, air and water temperature) and also because it was the
most practical way to input the surface fluxes in numeri-
cal models. The accuracy of the estimates depends on how
well these exchange coefficients represent the flux processes
(Blanc, 1987; Smith et al., 1996). Blanc (1985) gave a de-
tailed comparison of various schemes while Said and Druil-
het (1991) provided an exhaustive survey on the aerody-
namic coefficients estimated through various methods over
different oceanic regions during numerous field experiments;
Smith (1989) reported a careful up-to-date review on the sta-
tus of evaporation measurements. Large et al. (1994) pre-
sented a detailed survey on the available schemes to rep-
resent a vertical mixing scheme that can be developed into
a suitable oceanic boundary layer model for climate stud-
ies and detailed a K Profile Parameterization (KPP) model
and its successes (Troen and Mahrt, 1986). They reviewed
the model and suggested further developments for the KPP
model. However, the oceanic database reported by Large et
al. (1994) could not explain the queries related to modelling.
Despite years of research there is still uncertainty with re-
gard to the behaviour of the various transfer coefficients, in
particular for the behaviour of sensible and latent heat flux
at wind speeds over 10 ms−1 (see the Joint WCRP/SCOR
Working Group Report on Air-Sea Fluxes available at http:
//www-pcmdi.llnl.gov/airseawg). The present study is aimed
at studying the wind speed dependence of air-sea exchange
coefficients of momentum, heat and moisture, crucial for the
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determination of air-sea interface fluxes. The behaviour of
roughness lengths for wind (z0), temperature (z0t ) and hu-
midity (z0q ), which plays a key role in the determination
of the exchange coefficients, is also addressed in the paper.
The study is based on surface layer data collected from a
ship-borne platform (Oceanic Research Vessel (ORV) Sagar
Kanya) over the western tropical Indian Ocean region during
the Intensive Field Phase (IFP-99) of the field experiment
“Indian Ocean Experiment (INDOEX)” (Subrahamanyam
and Radhika, 2002; Subrahamanyam et al., 2001a, b, 2002,
2003).

2 INDOEX, IFP-99: Details on the field experiment

INDOEX, a major international field experiment and re-
search programme, is the result of concerted efforts of sev-
eral scientific personnel in various inter-disciplinary organi-
zations in India and abroad. The main objective of the IN-
DOEX expedition was to study the radiative forcing by at-
mospheric aerosols and the migration of the anthropogenic
and continental aerosols and pollutants over the Indian Ocean
(Ramanathan et al., 1996, 2001 and the references cited
therein). The experiment was carried out in four consecutive
phases during 1996 to 1999. The Intensive Field Phase of In-
dian Ocean Experiment (INDOEX, IFP-99) was conducted
on board ORV Sagar Kanya during 20 January – 12 March
1999.

2.1 Experimental set-up

In the present analysis, air-sea interaction measurements are
carried out from a shipboard platform. In contrast to the at-
mospheric surface layer measurements made over the land,
measurements over the oceanic surface are quite difficult,
and the possibilities of errors in the measurements are large.
In general, a shipboard platform produces two main sources
of error in air-sea interaction measurements, viz: - local
flow distortion over the bulk of the ship, and contamination
of the wind sensors by heat and moisture. Apart from the
gross contamination of wind components by motion of the
ship, the angular rotation of the instrument axes by pitch and
roll cause cross-contamination of horizontal and vertical flux
components (Bradley et al., 1991). During INDOEX, IFP-99
campaign, air-sea interaction measurements were carried out
by mounting different meteorological sensors on a 7-meter
long retractable boom close to the ship bow on board ORV
Sagar Kanya (Subrahamanyam and Radhika, 2002; Subra-
hamanyam et al., 2001b, 2002). Three axis Gill propeller
anemometers were used for the wind speed measurements
while the relative humidity and ambient air temperature were
measured from a humicap sensor. All the sensors mounted
on the boom were connected to a data logger (Daq Book)
installed at Meteorology Lab on board the ship. Air temper-
ature and relative humidity measurements were acquired at a
sampling rate of 0.1 Hz from a humicap sensor, whereas wind
speed measurements were taken at a sampling rate of 10 Hz
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Fig. 1. (a) Cruise track of the field experiment “INDOEX, IFP-
99” conducted on board ORV Sagar Kanya during 20 January – 12
March1999.(b) Position of ship in terms of geographic latitude and
longitude with Julian day number.

from three axis Gill propeller anemometers. Besides these,
Dry and Wet Bulb Temperature (DBT and WBT), surface
pressure and Sea Surface Temperature (SST) were measured
manually at every two-hour interval. A psychrometer was
used for measuring the DBT and WBT. SST was measured
using the InfraRed (IR) Thermometer. The meteorological
sensors mounted on the retractable boom during the cam-
paign provided relatively good sampling for periods when
winds were blowing directly toward the bow of the ship; but
when the winds are blowing from the stern, the data itself
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may be contaminated by heat and moisture originating from
the ship. The wind speed measurements are corrected for
the movement of the ship. We could not, however, ascer-
tain the effects on the measurements due to contamination by
heat and moisture originating from the ship. In order to cou-
ple automatically recorded data from the sensors mounted
on the retractable boom with the manually measured param-
eters at every two-hour interval, hourly averaged values of
air temperature, relative humidity and wind speed measure-
ments roughly corresponding to the time of manual measure-
ments are used. The details of a few sensors used in the
present study are briefly tabulated in Table 1. Further de-
tails on the accuracies of the measurements made by the sen-
sors and the data acquisition system are reported elsewhere
(Subrahamanyam and Radhika, 2002; Subrahamanyam et
al., 2001a, 2002).

2.2 Cruise details

The field experiment covered a broad oceanic region of the
Indian Ocean and the Central Arabian Sea over a latitude
range 15◦ N to 20◦ S and a longitude range 63◦ E to 77◦ E.
Figure 1a shows the cruise track of the campaign. The po-
sition of the ship in terms of geographical latitude and lon-
gitude with Julian day number is shown in Fig. 1b for bet-
ter reference. The first meridional track approximately along
77◦ E longitude (hereafter, referred to as leg-1) was traversed
during the onward track of the cruise between 20 January–4
February 1999, whereas the second meridional track approx-
imately along 63◦ E longitude (hereafter, referred to as leg-
3) took place during the return track of the cruise between
18 February–1 March 1999. Similarly, there are two zonal
tracks, the first zonal track along 20◦ S latitude (hereafter,
referred to as leg-2) during the onward track of the cruise
was conducted during 4–11 February 1999, whereas the sec-
ond zonal track along 15◦ N latitude (hereafter, referred to
as leg-4) was covered between 1–6 March 1999 during the
return track of the cruise. The availability of data along two
meridional tracks during the cruise made it possible to ob-
serve the cross-equatorial gradients in the estimates of air-sea
exchange parameters, while the spatial variability along the
two zonal tracks, one located in the Northern Hemisphere,
and the other in the Southern Hemisphere gave an opportu-
nity for assessing the behaviour of the estimated parameters
in the two hemispheres (Subrahamanyam and Radhika, 2002;
Subrahamanyam et al., 2001b, 2002). In the present paper,
we describe the spatio-temporal variation of air-sea interac-
tion parameters for all four legs separately in relation to the
prevailing meteorological conditions.

3 Method of analysis

The bulk aerodynamic method estimates the turbulent ex-
changes of downward momentum flux or stress (τ ) in Nm−2,
sensible heat flux (HS) and latent heat flux (HL) in Wm−2.
Computation of the surface layer fluxes using this method re-

quires determination of the exchange coefficients (CD, CH

and CE). In the present analysis, we have estimated the
values of the empirical exchange coefficientsCD, CH and
CE through an iterative scheme based on a revised bulk
algorithm discussed in detail in Subrahamanyam and Rad-
hika (2002). The basic methodology is summarized as fol-
lows: turbulent exchange processes in the atmospheric sur-
face layer are commonly formulated within the framework
of Monin-Obukhov similarity theory (Bradley et al., 1991;
Stull, 1988). Based on the integrated forms of the pro-
file relations that considered the non-diabatic cases as well
(Businger et al., 1971), the friction velocity (u∗) and scal-
ing parameter for temperature and humidity (θ∗ andq∗) are
given as:

u∗ = [k.(U10 − Us)]/[ln(z/z0) − 9m)] (1)

θ∗ = [k.(θ10 − Ts)]/[ln(z/z0t ) − 9t ] (2)

q∗ = [k.(q10 − qs)]/[ln(z/z0q) − 9q ], (3)

whereU , θ andq represent the mean wind speed (ms−1),
potential temperature (K) and specific humidity (kg.kg−1),
respectively. The subscripts “S” and “10” represent the sea
surface and measurement height,z (= 10 m), respectively,
TS is the sea surface temperature (K) andk (= 0.4) is the
von Karman constant. In Eqs. (1), (2) and (3) thez0, z0t

andz0q are the roughness lengths for wind, temperature and
humidity, respectively, whereas terms “9m”, “ 9t ” and “9q ”
are the integrated forms of the functions of the lower level
stability (z/L), for wind speed, temperature and humidity,
respectively. The integrated stability functions “9m”, “ 9t ”
and “9q ” for stable and unstable stratification are defined as
(DeCosmo et al., 1996; Dyer, 1974; Smith, 1988):

9m = 9t = 9q = −5.(z/L) (4)

for stable stratification. For unstable stratification, the in-
tegrated stability functions are defined as (DeCosmo et al.,
1996; Paulson, 1970; Smith, 1988):

9m = 2. ln[(1+x)/2]+ln[(1+x2)/2]−2. tan−1(x)+(π/2)(5)

9t = 9q = 2. ln[(1 + x2)/2], (6)

where “x” is given by:

x = [1 − 16.(z/L)]1/4. (7)

In the above equations,L is the Monin-Obukhov stability
length, and it has been derived using (Lo, 1993):

L = (TV .u∗
2)/(k.g.θV ∗), (8)

where “g” (= 9.8 ms−2) is the acceleration due to gravity,TV

(virtual temperature at the measurement height, in Kelvin) is
used in order to include the effects of water vapor content
on the density stratification, andθV ∗ is the scaling parameter
for virtual temperature. To initialize the calculations, an esti-
mated value of the velocity roughness length,z0 ≈ 10−4 m is
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Table 1. Accuracy of measurement of a few sensors

Sr.No. Sensor/Instrument Measured Manufacturer Accuracy
Parameter

1. Gill Propeller U, V and W RM Young, Michigan, 0.1 ms−1

Anemometer 49686, USA
2. Humicap Air Temperature RM Young, Michigan, 0.3◦C for air temperature

Relative Humidity 49686, USA 3% for relative humidity
3. IR Sea (Skin) Surface Telatemp, Fullerton, 0.5◦C

Thermometer Temperature CA 92635,USA
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Fig. 2. Iterative estimates of(a) veloc-
ity roughness length (z0, × 10−5 m),
(b) roughness length for temperature
(z0t , × 10−5 m), (c) roughness length
for humidity (z0q , × 10−5 m), (d) sta-
bility function 9m (e)stability function
9h, (f) stability function9q , (g) scal-
ing parameter for windu∗ (ms−1), (h)
scaling parameter for temperatureθ∗

(K) and (i) scaling parameter for hu-
midity q∗ (kg.kg−1) with the number
of iterations.

assumed applicable for the sea surface under moderate wind
conditions (Lo, 1993). For the first iteration, the stability
functions “9m”, “ 9t ” and “9q ” are assumed to be zero, the
wind speed at sea surface (US) is taken as zero (Lo, 1993)
and the relative humidity at the sea surface is assumed to be
98% (Kraus and Businger, 1994). The neutral stability trans-
fer coefficients are uniquely related to the roughness lengths
z0x (z0 in case of wind profiles,z0t in case of temperature
profiles andz0q in case of humidity profiles) as:

CxN = [k2/ ln(z/z0). ln(z/z0x)]. (9)

Smith (1988) showed that the neutral stability transfer co-
efficients for heat and moisture (CHN andCEN ) are approxi-
mately independent of wind speed with values of 1.15×10−3

at a reference height of 10-m. Therefore, solving the above
equation for the roughness length, with the prescribed value

of (CHN andCEN (= 1.15×10−3), we obtain the roughness
length for temperature and humidity (z0t andz0q ) as:

z0t = z0q = z/ exp[k2/(1.15× 10−3). ln(z/z0)]. (10)

With the estimates of friction velocity obtained from
Eq. (1), we follow the empirical relation for roughness length
suggested by Charnock (1955). The roughness length (z0) is
represented as the sum of two terms, one due to Charnock
(1955) (z0c = α.u ∗

2 /g)) and the other is the viscous term
(z0s = β.υ/α.u∗) due to Smith (1988), (Fairall et al., 1996;
Grachev and Fairall, 1997):

z0 = (α.u ∗
2 /g) + (β.υ/α.u∗), (11)

whereα is the Charnock “constant”, for which values be-
tween 0.010 and 0.035 are cited in literature (Garratt, 1992,
Table 4.1, pp. 99). In the present analysis, the value of
α is taken as 0.011 (after Smith, 1988). The term “υ”
(= 14 × 10−6m2s−1) represents the dynamic viscosity of



D. B. Subrahamanyam and R. Ramachandran: Wind Speed dependence of Air-Sea Exchange parameters 1671

air. For wind speeds above about 6 ms−1, the second term in
Eq. (11) is negligible. A value ofβ = 0.11 has been used
from wind tunnel experiments following Smith et al. (1996).
The roughness length (z0) estimate obtained from Eq. (11)
is then substituted into Eq. (10) to obtain new estimates of
roughness length for heat and moisture (z0t andz0q ). The
wind speed at the sea surface (Us), commonly known as drift
velocity, is taken as zero for the first iteration. Smith (1988)
performed the above calculations for a range of wind speeds
and sea-air (virtual) temperature differences by iteratingu∗

andθ∗ until the neutral flux coefficients matched their spec-
ified values. Here, the value of the drift velocity (wind speed
at sea surface,Us in Eq. 1) is taken as zero. However, it has
been verified experimentally and theoretically, that the sur-
face drift velocity is approximately equal tou∗ (e.g. Hicks,
1972; Lo, 1993; Roll, 1965). Therefore, in the revised bulk
algorithm (Subrahamanyam and Radhika, 2002), the itera-
tion is carried out for obtaining the estimates ofu∗, θ∗ and
q∗ in such a way that for all subsequent iterations the esti-
mated value ofu∗ from the preceding iteration is substituted
in place of drift velocity (Us). The integrated stability func-
tions (9m, 9t and9q ) are estimated using equations sug-
gested in Smith (1988). Now, the estimated values of rough-
ness lengths (z0, z0t andz0q ) and the stability functions (9m,
9t and9q ) are substituted into Eqs. (1), (2) and (3) to deter-
mine new estimates ofu∗, θ∗ andq∗. Using these, the sta-
bility functions (9m, 9t and9q ) and the roughness lengths
(z0, z0t andz0q ) are determined again and the iteration is re-
peated, untill theu∗, θ∗, q∗ andz0 calculated from the two
consecutive iterations converge. Figure 2 shows the gradual
convergence of the estimates of the roughness lengths (z0,
z0t andz0q ) shown in Figs. 2a, b and c, respectively), the sta-
bility functions (9m, 9t and9q ) shown in Figs. 2d, e and
f, respectively), and the scaling parameters (u∗, θ∗ andq∗

shown in Figs. 2g, h and i, respectively), through the itera-
tions. The iterative method has two main advantages: (1) the
surface drift velocity is taken as zero only for the first iter-
ation, afterwards it is replaced byu∗, thereby giving better
and more accurate values of other parameters in the ensuing
iterations; (2) for initialing the calculations, the sea surface
roughness length (z0) is taken as 10−4-m (Lo, 1993). How-
ever, an estimate ofz0 based on the iteration of the surface
layer data collected during the INDOEX campaign covering
a broad oceanic region will be a better representation of ac-
tual z0 against the initially assumed value of 10−4 m. Fig-
ure 2 represents the converging values of the estimates after
successive iterations. These final estimates ofu∗, θ∗ and
q∗ are then used for the computation of the drag coefficient
(CD) and sensible heat and water vapour exchange coeffi-
cients (CH andCE) as follows (Byun, 1990; DeCosmo et
al., 1996):

CD = u ∗
2 /(U10 − Us)

2 (12)

CH = u ∗ .θ ∗ /(U10 − Us).(θ10 − Ts) (13)

CE = u ∗ .q ∗ /(U10 − Us).(q10 − qs). (14)
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 Fig. 3. Latitudinal variation of air-sea interaction parameters along
cruise leg-1.(a) Wind Speed (WS, ms−1); (b) Stability Parameter
(z/L); (c) Drag Coefficient (CD , × 10−3); (d) Sensible Heat and
Water Vapour exchange coefficients (CH andCE , × 10−3).

4 Results and discussion

The meteorological conditions prevailing over the region of
tropical Indian Ocean and Central Arabian Sea along the
cruise tracks during the entire campaign can be summarized
as follows: during the forward track of the cruise, most of the
days were cloudy. Along leg-1, heavy rains were observed in
the latitude range 2◦ S to 4◦ S. During leg-3 and leg-4, i.e.
the return track of the cruise, barring a few days, most of the
days were clear, bright and sunny. During the INDOEX, IFP-
99 (20 January– 12 March 1999), the Inter-Tropical Conver-
gence Zone (ITCZ) was located in the Southern Hemisphere,
around 5◦ S and was migratory (Madan et al., 1999). Subra-
hamanyam and Radhika (2002) have described the prevailing
meteorological conditions in terms of surface observations
along the cruise track in detail. Since the aim of this paper
is to study the wind speed dependence of air-sea exchange
parameters, we present the spatio-temporal variation of these
parameters along the cruise track with the variation of wind
speed. In the following sub-sections, we shall describe the
spatio-temporal variation of boundary layer parameters along
the cruise track (Figs. 3–6, respectively). In each of these
figures, four panels (a–d) represent the spatio-temporal vari-
ation of the following parameters: (a) Wind Speed (WS,
ms−1); (b) Stability Parameter (z/L); (c) Drag Coefficient
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 Fig. 4. Longitudinal variation of air-sea interaction parameters
along cruise leg-2.(a) Wind Speed (WS, ms−1); (b) Stability Pa-
rameter (z/L); (c) Drag Coefficient (CD , × 10−3)); (d) Sensi-
ble Heat and Water Vapour exchange coefficients (CH andCE , ×

10−3).

(CD); (d) Sensible Heat and Water Vapour exchange coeffi-
cients (CH andCE), respectively. The error bars represent
the uncertainty in the measurements and the estimated pa-
rameters due to uncertainty in the instrumentation errors.

4.1 Spatio-temporal variations in air-sea exchange param-
eters along the cruise track

4.1.1 Cruise leg-1 (meridional track-AB)

Figure 3 shows the latitudinal variation of air-sea interaction
parameters along cruise leg-1, marked “AB” in Fig. 1a. This
part of the cruise was traversed in a period of almost 15 days
from 21 January–4 February 1999. During this leg, the ITCZ
was located between the equator and 10◦ S. Intense convec-
tion and associated rainfall are also reported in this latitudinal
belt (Subrahamanyam et al., 2002, 2003). Along the cruise
leg-1,WS varied within a range 1 to 14 ms−1, with a peak
value of about 14 ms−1 between the equator and the 3◦ S lat-
itudinal belt (Fig. 3a). As the ship crossed 10◦ S latitude, it
experienced a gradual increase inWS magnitudes and be-
came maximum at the tip of the leg at 20◦ S, i.e. at point “B”
(Fig. 1a). The weekly averaged wind field analysis provided
by the National Centre for Medium Range Weather Fore-
casting (NCMRWF, New Delhi, India) reported by Madan
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 Fig. 5. Same as Fig. 3, but for cruise leg-3.

et al. (1999) also supports the surface observations shown
in these figures (Subrahamanyam and Radhika, 2002). Fig-
ure 3b shows the latitudinal variation in stability parame-
ter values (z/L). The Monin-Obukhov stability parameter
(z/L) is a measure of atmospheric stability. Negative values
of z/L correspond to unstable conditions while positive val-
ues represent stable conditions (Stull, 1988). Except for a
few regions, the entire cruise leg-1 experienced near-neutral
conditions, withz/L ≈ 0. Panels “c” and “d” of Fig. 3
shows the variation in air-sea exchange coefficients,CD and
(CH = CE), respectively. A small change in the magnitudes
of these coefficients can lead to a large variation in the flux
magnitudes. Along cruise leg-1, on average,CD values were
about 1.20 whileCH values were about 1.26 (Figs. 3c and d).
It has to be noted that along ITCZ regions near the equatorial
belt, the air-sea exchange coefficients also show considerable
gradients, which, in turn, affect the magnitudes of air-sea in-
terface fluxes over these regions.

4.1.2 Cruise leg-2 (zonal track-BC)

Longitudinal variation of observed and estimated parameters
along cruise leg-2 is shown in Fig. 4. Cruise leg-2 (marked
“BC” in Fig. 1a) took place between 4–11 February 1999.
The fact that this part of the cruise took place within a period
of a week and also that it had a zonal movement, one does not
observe a drastic spatial variation in the observed parameters
or in the estimates. As can be seen from the figure, mag-
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 Fig. 6. Same as Fig. 4, but for cruise leg-4.

nitudes of wind speed were larger along leg-2, and broadly
it varied within a range of 4.6 to 13 ms−1, with an average
value of about 9.5 ms−1 (Fig. 4a). It has to be noted that
the wind field analysis provided by NCMRWF, New Delhi
(Madan et al., 1999) for the same period also shows strong
easterly winds prevailing over this zonal belt. The stability
parameter (z/L) and the air-sea exchange coefficients (CD

andCH ) do not show any large variations along leg-2;z/L

values remained near zero, showing near-neutral stability of
the atmosphere (Fig. 4b). Average drag coefficient values
were about 1.31 (Fig. 4d) whileCH values were about 1.18
(Fig. 4d).

4.1.3 Cruise leg-3 (meridional track-CD)

Figure 5 shows the latitudinal variation of air-sea interac-
tion parameters for leg-3 covered during the return track
of the cruise. This leg (marked “CD” in Fig. 1a) was tra-
versed during 18 February–1 March 1999. It is to be noted
that the prevailing conditions were different from that dur-
ing the first meridional track-AB, which took place about
2–3 weeks earlier. Also, the second meridional track was
along 63◦ E against 77◦ E longitude for the first meridional
track. Most of the days during leg-3 were cloud free, bright
and sunny. However, the ITCZ had weakened and its posi-
tion was between the equator and the 10◦ S latitudinal belt.
Moderate to high wind speeds were observed along leg-3
of the cruise track. The southern part of leg-3 experienced
large winds while the equatorial belt experienced low winds
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 Fig. 7. Wind speed dependence of roughness length:(a) Veloc-

ity roughness length -z0c (×10−5m) (after Charnock, 1955);(b)
Velocity roughness length -z0s (×10−5m) (after Smith, 1988);(c)
Velocity roughness lengthz0 (sum of z0c and z0s ), (×10−5m);
(d) Roughness length for temperature (and humidity)z0t (= z0q ),

(×10−5m).

(Fig. 5a). Except for regions near the equator, the stability
parameter and air-sea exchange coefficients remained con-
stant (Figs. 5b, c and d). Drag coefficient values were about
1.21, whileCH remained more or less constant with a value
of about 1.27 (Figs. 5c and d).

4.1.4 Cruise leg-4 (zonal track-DE)

Figure 6 shows the longitudinal variation of the air-sea in-
teraction parameters for leg-4, covered between 1–6 March
1999. As for the longitudinal variations observed along leg-
2, this leg also does not show large spatial gradients in air-sea
exchange parameters. Along leg-4 wind speed magnitudes
were low in the range 1.5 to 7.2 ms−1 (Fig. 6a). The eastern
sector of leg-4 shows unstable atmospheric conditions with
negative values ofz/L (Fig. 6b). Figures 6c and d show the
longitudinal variation ofCD andCH , respectively. From the
figure, it can be seen that there is no large variation in the
parameters as was seen in the meridional tracks.
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 Fig. 8. Wind speed dependence of air-sea exchange coefficients:(a)

CH (= CE); (b) CD and(c) CDN .

4.2 Variation of surface roughness length (z0, z0t andz0q )

Now with the available estimates of air-sea exchange param-
eters, we attempt to study the wind speed dependence of
surface roughness length and air-sea exchange coefficients,
imperative in the estimation of air-sea interface fluxes. The
roughness length (z0x) can be physically interpreted as the
virtual origins of the profiles of the concerned parameter “x”
(in this case, “x” can be winds, temperature or humidity). It
can be determined by plotting ln(z) vs. the measured winds
at that height, and extrapolating the best-fit straight line down
to the level where the winds are zero, with its intercept on
the ordinate axis being ln(z0). One should note that this is
only a mathematical or graphical procedure for estimating
the roughness length (z0). In practice, measurements of any
meteorological parameter over the oceanic surface at various
heights are quite difficult. Therefore, in the present study,
the roughness length is estimated using an iterative scheme
described in Sect. 3.

We now attempt to study the variation of surface rough-
ness length in relation to the surface wind speeds. Fig-
ure 7 shows the wind speed dependence of velocity rough-
ness lengthz0. As per the definition of velocity roughness

length (see Eq. (11), Sect. 3),z0c is given as the sum of
two terms,z0c and z0s . The variation of the two indepen-
dent terms,z0c andz0s are shown separately in the top two
panels (Figs. 7a and b), followed by the variation ofz0 and
z0t (= z0q ) in the two bottom panels (Figs. 7c and d). From
Fig. 7a, it is clear that there is a significant increase in the
roughnessz0c (defined by Charnock, 1955) with increasing
wind speed. In contrast to the variation of the first termz0c,
we see a decreasing trend for the variation of second term
z0s (the viscous term defined by Smith, 1988) with increas-
ing wind speed (Fig. 7b). It can be seen from Fig. 7b that
for winds above 6 ms−1, as expected, the viscous term (z0s)
has negligible influence, and the value drops to zero in large
winds and it dominates in the lower wind speed regime. The
variation of velocity roughness length, which is defined as
the sum ofz0c andz0s , with wind speed, is shown in Fig. 7c
with the variation of wind speed. The wind speed depen-
dence ofz0 reflects the behaviour of both the terms collec-
tively. From Fig. 7c, we can see that the magnitude of ve-
locity roughness length (z0) decreases from 9× 10−5 m to 3
× 10−5 m, when the magnitude of the winds changed from
1 ms−1 to 3 ms−1. Once it exceeds a value of 3 ms−1, there
is a sharp increase in the magnitude ofz0, and it reaches up
to 30× 10−5 m at about 14 ms−1. Figure 7d shows the vari-
ation of roughness lengths for temperature and humidity (z0t

andz0q ) with increasing wind speed. When the winds are
greater than 3 ms−1, there is clear evidence that the surface
roughness for temperature and humidity decreases with in-
creasing wind speed. However, in the wind speed regime of
0 to 3 ms−1, there is a sharp increase in the magnitude ofz0t

(= z0q ) with increasing wind speeds. This behaviour ofz0t

andz0q at lower wind speeds can again be explained due to
the viscous term, shown in Eq. (11), which determines the
magnitude ofz0. When we compare the variation ofz0 and
z0t (= z0q ) with wind speed, we notice that for low winds
(when winds are less than 7 ms−1), the magnitudes ofz0t (=
z0q ) are large compared toz0; however, at larger wind speeds
(>7 ms−1), thez0 values are considerably larger than that of
thez0t (=z0q ) values.

Malhi (1996) gives a detailed analysis of the behaviour
of the roughness length for temperature (z0t ) over hetero-
geneous surfaces over land. His analysis demonstrated that
certain transfer processes within the interfacial sub-layer, no-
tably molecular diffusion and free convection, might induce a
dependency ofz0t on wind speed. Furthermore, in this study
the roughness length for temperature (z0t ) shows a decreas-
ing trend with increasing wind speed. Except for the lower
wind speed regime (0 to 3 ms−1), our analysis also shows a
decreasing trend forz0t andz0q with increasing wind speed.
Turbulence alone cannot transfer heat and moisture over the
air-sea interface; therefore, we have to consider molecular
effects, in addition to turbulent transfer, for studying the be-
haviour of z0t and z0q . Molecular conduction of heat and
molecular diffusion of tracers cause transport between the
surface and the lowest few millimeters of air. With increasing
wind speed, the formation of sea waves lead to dominance of
turbulence over molecular diffusion at the lowest few cen-
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timeters of air, which would lead to a further decrease in the
magnitude ofz0t andz0q .

4.3 Variation of air-sea exchange coefficients

Figure 8 shows the wind speed dependence of bulk trans-
fer coefficients for momentum, heat and moisture computed
using Eqs. (12) to (14). In the figure, the top panel (8a)
shows the wind speed dependence of drag coefficients and
Fig. 8b that of the sensible heat and water vapor exchange
coefficients. From Fig. 8a, we notice that the drag coef-
ficient increases with increasing wind speed. Over a wind
speed regime of 1–14 ms−1 (observed during INDOEX, IFP-
99 campaign), the variation of drag coefficient lies within a
range 0.7–1.5 (× 10−3); however, in the lower wind speed
regime (i.e. 1–4 ms−1), there is a slight decrease in the
magnitude of drag coefficient. Smith (1988) also reported
a similar variation of drag coefficient at a lower wind speed
regime. He observed that the value of the exchange coeffi-
cient depends strongly on the stability stratification at low
wind speeds, but such an influence was not seen with in-
creasing wind speed. Recently, Wu (1994) suggested that the
closely packed capillary waves associated with surface ten-
sion partly explain the large drag coefficients at weak winds.
Geernaert et al. (1988), Bradley et al. (1991) and Greenhut
and Khalsa (1995) have also reported a similar increase in
drag coefficient values at low wind speeds. In contrast to the
variation of drag coefficient (CD), in Fig. 8b, we observe that
the magnitude ofCH (= CE) decreases with increasing wind
speed. At larger wind speeds, it becomes almost constant and
there is very little scatter at these wind speeds, whereas large
scatter can be seen in the lower wind speed regime. Bradley
et al. (1991) pointed out that the large scatter in the measured
values ofCH can arise because of the very low heat fluxes,
about the order of what can be obtained at the limit of reso-
lution of the turbulence measurements. However, it is worth
mentioning that the estimates of the air-sea exchange coef-
ficients are strongly dependent on the bulk scheme adopted
and its dependence on stability. Table 2 compares the es-
timates of the air-sea exchange coefficients of sensible heat
(CH ) and water vapour (CE) obtained in the present study
with those obtained by other investigators.

Using the bulk transfer coefficients already obtained, we
now attempt to study the variation of these coefficients for
neutral stratification. The expression for neutral stability
transfer coefficient (shown in Eq. 4, Sect. 3) is hypothetical,
since neutral stability implies zero heat flux at the surface and
a nonexistent potential temperature gradient (Bradley et al.,
1991). In the revised bulk scheme adopted for the present
analysis, the neutral stability transfer coefficients for heat
and moisture (CHN = CEN ) are taken as constants with a
prescribed value of 1.15× 10−3 (Smith, 1988). Now we
study the variation of neutral drag coefficient (CDN ) with
respect to the wind speed over the Indian Ocean. We un-
derstand from Fig. 8c that for the larger wind speed regime
(>4 ms−1), there is a significant increase in the magnitudes
of CDN (from 0.85 to 1.5× 10−3, which implies that with

increasing wind speed, the sea surface roughness also in-
creases). The increase in the magnitude ofCDN at low wind
speeds can again be attributed to the viscous term defined in
Eq. (11) (Sect. 3). Based on the scatter plot ofCDN vs. wind
speed, we have derived an empirical relation between our es-
timates ofCDN with the observed values of wind speeds. The
equation representing the best fit is also shown in the figure,
to arrive at the following empirical relationship forCDN :

CDN = [(0.8366± 0.0423)

+(0.0436± 0.0005) × U10] × 10−3. (15)

DeCosmo (1991) gives a comparison of the various re-
gression estimates of drag coefficients at 10-m height. A
few CDN regression equations with the respective range of
wind speeds reported by DeCosmo (1991), Garratt (1977)
and the present study are detailed in Table 2. These equa-
tions, derived empirically, spread over a wide range of wind
speeds. Equation (15) gives the wind speed dependence of
drag coefficient for neutral stratification over a wind speed
range, 1–14 ms−1. Stull (1988) gives the average magni-
tudes of drag coefficients over different continents (see Ta-
ble 7-2, pp. 264). Several studies suggested that the vari-
ance in the drag coefficient estimates may be explained pri-
marily by an additional dependence ofCD on sea state, but
the mathematical formulation which best describes this rela-
tionship for non-equilibrium conditions is not readily agreed
upon by many investigators. To summarize the behaviour of
air-sea exchange parameters over the tropical Indian Ocean
and Central Arabian Sea during the INDOEX, IFP-99 cam-
paign and their wind speed dependence, the statistical esti-
mates and the errors in the estimates are given in Table 3.

5 Summary

In the present study, the wind speed dependence of air-sea
exchange coefficients over the Indian Ocean during the IN-
DOEX, IFP-99 campaign is reported. The magnitude of
the exchange coefficient depends on many factors, includ-
ing the wind speed, fetch and wave age, stability, the scheme
adopted for the estimation of these coefficients, etc. In this
study, however, we have attempted to show only the wind
speed dependence of the air-sea exchange parameters. The
key features revealed from the study can be summarized as
follows:

– The drag coefficient estimates for neutral stratification
increases at low wind speeds, typically in the range 1–
4 ms−1.

– For larger winds (>4 ms−1), there is a significant in-
crease in the magnitude of the neutral drag coefficient,
and the coefficients show an increasing trend with in-
creasing wind speed.

– In contrast to the variation of drag coefficient, the ex-
change coefficients for heat and moisture (CH andCE)
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Table 2. Review on comparison of estimates in air-sea exchange coefficients (CH andCE) and regression of drag coefficient for neutral
stratification (CDN ) based on wind speed at 10-m

Investigators WS CHN CEN 10−3 Remarks/Reference
range (×10−3) (×10−3) Regression
(ms−1) Equation

Priestly (1951) 2.5–12 – – 1.25
strong – – 2.6 (Aust. J. Sci. Res., A4, 1951)

Wilson (1960) ∼1–5 – – 1.42
9–20 – – 2.37 (J. Geophy. Res. 65, 1960)

Deacon and Webb (1962) 2.5–13 – 1.0 to 1.6 1.0 + 0.07U10N (The Sea, Vol. 1, Interscience, 1962)

Robinson (1966) 3–8.5 – – 1.8
2.5–14 – – 1.48 (Quart. J. Roy. Met. Soc. 62, 1966)

Wu (1969) 3–15 – – 0.5(U10N )0.5

15–21 – – 2.5 (J. Geophy. Res. 74, 1969)

Hasse (1970) 3–11 1.0 1.0 1.21± 0.24 Buoy data;(Oregon State
University Tech. Rep.188)

Hidy (1972) 2–10 – – 1.5 (Bull. Amer. Met. Soc. 53, 1972)

Smith and Banke (1975) 2.5–21 – – 0.63 + 0.066U10N Sable Island, Surf zone, Based on
Mast platform;
(Quart.J.Roy.Met.Soc. 115, 1975)

Kondo (1975) 3–16 – – 1.2 + 0.025U10N Tower data,
(Bound.Layer.Meteor. 9, 1975)

Garratt (1977) 3–21 – – 0.75 + 0.067U10N Compilation of several previously
published data sets

do not show any significant variation with increasing
wind speed in the wind speed range 1–14 ms−1. An av-
erage value of the exchange coefficients are:

– CHN (= CEN ) = 1.11± 0.06.

– Estimates of the drag coefficient for neutral stratifica-
tion over the Indian Ocean using the present scheme,
provide the following regression equation forCDN with
wind speed:

– CDN = [0.8366+ 0.0436× U10] × 10−3.

– Except for low winds (<3 ms−1), the velocity rough-
ness length (z0) increases with increasing wind speed.
In contrast, the roughness length for temperature and
humidity (z0t andz0q ) show a decreasing trend with in-
creasing wind speed (>3 ms−1).

6 Concluding remarks

The INDOEX, IFP-99 campaign provided an opportunity to
study the structure and characteristics of MABL over the In-
dian Ocean. In the present article, some of the features of

air-sea interaction over the Indian Ocean are addressed. Air-
sea exchange parameters of water vapor, heat and momen-
tum are important inputs for mesoscale and GCM model-
ing. These are particularly lacking over the tropical oceans.
Various schemes were published from time to time for the
computation of bulk transfer coefficients. There are several
studies that report MABL characteristics over oceans; such
studies over the tropical Indian Ocean region, however, are
few. In the present study, an attempt is being made to show
the behaviour of the surface roughness length and air-sea ex-
change coefficients from data collected over a wide region
of the tropical Indian Ocean during INDOEX, IFP-99 cam-
paign. Webster and Lukas (1992) emphasized that “the vari-
ation of fluxes between the ocean and the atmosphere is very
sensitive to the choice of parameterization, especially in low
wind regimes.” Miller et al. (1992), who found dramatic im-
provements in simulated tropical phenomena by strengthen-
ing the air-sea coupling in the light wind regime, verifies this
fact. In low wind speed regimes it is necessary to account for
buoyancy effects on the turbulent transport, an aspect that is
dealt with in the standard stability dependent bulk scheme
adopted by Smith (1988), which shows a good performance
in the tropics (Bradley et al., 1991). Estimates of bulk trans-
fer coefficients and roughness lengths for velocity, tempera-
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Table 2. continued....

Investigators WS CHN CEN 10−3 Remarks/Reference
range (×10−3) (×10−3) Regression
(ms−1) Equation

Pond et al. (1971) 4–8 1.0 1.23±0.17 1.5× 10−3 Large buoy data; Comparison of
1.25±0.25 eddy correlation and inertial dissi-

pation method. (J.Atmos.Sci.28, 1971)

Large and Pond 10–25 – – 0.49 + 0.065U10N Compilation of ocean measurements
(1981, 1982)

Donelan (1982) 4–16 – – 0.35 + 0.142U10N Lake Ontario, 10 m

Geernaert et al. (1986) 5–22 – – 0.40 + 0.117U10N North Sea, 15 m

Geernaert et al. (1987) 5–25 – – 0.577 + 0.085U10N North Sea, 30 m

Smith (1988) 6–22 1.0 1.2 0.81 + 0.049U10N North Atlantic, Deep water

Bradley et al. (1991) 4–6 1.03 0.89 1.16 Micrometeorological measurements
carried onboard R/V Franklin over
the western equatorial pacific ocean

Large et al. (1994) 1–25 32.7(CD)1/2 (2.7/U10N +0.142
unstable 34.6(CD)1/2

18.0(CD)1/2 + 0.0764U10N (Reviews of Geophysics.)
stable 32/4, 1994

DeCosmo et al. (1996) 5–23 1.14 1.12 0.27 + 0.116U10N HEXOS results

Enriquez and 2–17 1.05± 0.39 – 0.509 + 0.065U10N Aircraft measurements during
Friehe (1997) SMILE, (J.Geophy.Res. 102, 1997)

Enriquez and 2–17 – – 0.6492 + 0.0571U10N Aircraft measurements during
Friehe (1997) CODE, (J.Geophy.Res. 102, 1997)

Rutgersson et al. 2–15 1.0± 0.3 1.2± 0.2 – Baltic Sea measurements,
(2001) (Bound.Layer.Meteorol. 99, 2001)

Subrahamanyam and 1–14 1.11± 0.06 1.11± 0.06 0.8366 + 0.0436U10N Western Tropical Indian Ocean
Radhika, (Present Study) during INDOEX, IFP-99

Table 3. Statistical estimates of parameters and their wind speed dependence during INDOEX, IFP-99

Parameter Minimum Maximum Mean Std. Std. Corr.Coeff.
Deviation Error w.r.t. WS

z0 2.619e-5 2.7124e-4 7.94827e-5 5.3524e-5 3.2101e-6 0.8671
z0t = (z0q ) 1.768e-5 1.989e-4 1.00e-4 5.38e-5 3.23e-6 0.9209

CDN 0.97 1.45 1.13108 0.12152 0.00729 0.95317
CHN = (CHN ) 1.03 1.28 1.11219 0.06052 0.00362 0.95493

ture and humidity over the Indian Ocean are obtained using
a method based on the bulk algorithm suggested by Smith
(1988). A modification is suggested in this work to the bulk
algorithm suggested by Smith (1988) by way of iteratively
computingu∗, z0, z0t andz0q . It has effectively improved
the accuracy of the estimates of the exchange coefficients, in
turn, providing a fairly reliable estimate of the fluxes.

Our estimates of the drag coefficients, particularly over
the meridional tracks, could have an inherent error since it is
cross-equatorial, where one can expect large gradients. The
general assumption of a homogeneous boundary layer, in this
case, may not be valid. Relatively large variability in the
meridional track estimates against zonal track estimates, par-
ticularly in consonance with large SST and wind speed gra-
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dients, evident in this study, point to this fact. Hence, to that
extent there is a limitation in the accuracy of the estimates
of the parameters along the meridional track reported in this
study.

Although there is a general agreement among investiga-
tors that the wind drag coefficient increases with increasing
wind speed over the ocean, there is also a strong view against
the empirically determined coefficients of the simple linear
formula, which quantifies this relationship. This can be at-
tributed to the inefficient calibration and other errors due to
sensor deployment caused by flow distortion, violation of the
assumptions of steady state and of isotropic turbulence and
the underlying physics of the scheme adopted for estimating
the bulk transfer coefficients. Concerted effort, by way of
both research and field experiments, are necessary to further
strengthen our understanding of the boundary layer parame-
terization and the bulk schemes over the tropical oceans.
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