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Abstract. We present a new algorithm for smooth-
ing/interpolation of two-dimensional fields applicable to
noisy data observed at scattered sites. The technique is based
on a special statistics allowing one to simultaneously mini-
mize the fit residual and the correlation between residuals of
adjacent points. The principle of the method is first explained
in the 1-D case and then extended to the 2-D case by adjunc-
tion of a regularization operator. The method is compared
with different algorithms (Loess-Renka, Biharmonic Spline
and kriging) in three test cases related to remote sounding of
the Earth’s atmosphere by space-borne experiments.

Key words. Atmospheric composition and structure (evolu-
tion of the atmosphere; instruments and techniques; general
or miscellaneous)

1 Introduction

Data retrieved from remote sounding space experiments gen-
erally provide atmospheric information with good coverage
in space and time. These data can be validated by compar-
ing results obtained by independent instruments and/or by
ground-based observations. However, satellite data from sev-
eral orbiting platforms correspond to different sounding ge-
ometries, such as solar or stellar occultation, nadir or limb
viewing, etc. Geolocation of sounded regions is also clearly
influenced by the orbital state vector and possible hardware
constraints. From these asynoptic and composite data sets, it
is, therefore, highly desirable to use efficient numerical tools
capable of producing regular (gridded) fields on which vali-
dation and statistical analysis can be performed (Lait, 2000).

Sophisticated interpolation techniques, such as 4-D vari-
ational assimilation (Fisher and Lary, 1995), are presently
developed and will be routinely used for future processing
of stratospheric data. However, these procedures are compu-
tationally very expensive and their success strongly depend
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upon the quality of the underlying atmospheric model. An
extensive review of atmospheric data analysis can be found in
Daley (1991) and a considerable number of methods for ap-
proximating two-dimensional (“2-D”) fields from scattered
data have been published (see Foley and Hagen, 1994).

This work presents a new algorithm for 2-D smoothing
which is based on an expansion in orthogonal polynomials
combined with a regularization driven by statistics different
from the usual Chi-squared. After disappointing experiences
with existing schemes, the method has been designed to be
robust (it should always converge), automatic (not requiring
interactive inspection of the smoothing level), reasonably fast
and not very sensitive to the inaccuracy of experimental error
bars. As the main idea of the algorithm is to Minimize the
Correlation between Residuals, it will be referred to as the
MCR method hereafter.

For the sake of clarity, we will first explain the principles
of the algorithm for one-dimensional (“1-D”) problems with-
out addressing a rigorous mathematical framework. In the
second part, we will extend it to 2-D cases and we will inves-
tigate its performance (with respect to alternative methods)
for realistic data sets coming from atmospheric remote sens-
ing experiments.

It is well known that the generalized least-squares tech-
niques require the use of a full covariance matrix to avoid
biases induced by possible correlation between data point er-
rors (notice that the data points themselves are highly cor-
related by the underlying physics). Also, it is clear that
the data point processing of instrumental data through in-
version algorithms may introduce correlation between values
retrieved at adjacent altitudes or between different species re-
trieved simultaneously. However, it is reasonable to assume
that the estimated random experimental errors at different
geolocations and sampling times are uncorrelated because
they correspond to independent realisations of the instrumen-
tal/inversion noise. Clearly, there does not exist a smoothing
algorithm capable of removing a bias in a given measure-
ment and if such a bias would exist, it could only be corrected
at the level of the combined “measurement-data processing”
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chain. The removing of the bias would also require the avail-
ability of many measurements at close geolocations and time
or the cross-validation with respect to several independent
experiments. Also, experimental data from spaceborne in-
struments are mostly available as independent measurements
with estimated variances. If a bias is suspected in the data
and if it can be estimated but not exactly computed, it can
be quadratically added to the random error variance before
applying the smoothing algorithm. The MCR method ex-
plained hereafter presupposes that the experimental errors as-
sociated with the measurement points have a zero mean and
are uncorrelated in space and time.

2 1-D MCR

We deal with the problem of approximatingm bivariate data
(xi , fi), i = 1...m by a smooth curvef (x) that should
approximate the unknown realityg(x). The measured data
are supposed to contain a noise componentδi so that

fi = g(xi) + δi . (1)

The standard deviationσi of δi and the experimental data
xi may have been measured by different instruments with
specific random error distributions and possible moderate
bias. The classical fitting strategy (Press et al., 1992) con-
sists of minimizing the merit functionχ2 defined by

χ2
=

m∑
i=1

d2
i , (2)

where the normalized residualdi is

di =
f (xi; c0, c1, ...cn) − fi

σi

(3)

and the approximating functionf (x; c0, c1, ...cn) depends
on (n + 1) parameters.

Ideally, the value ofχ2 should decrease when the number
of fitting parametersc0, c1, . . . cn is increased until a plateau
(whose value is aboutm ±

√
2m for large m) is reached.

An insufficient number of parameters causes underfitting and
some information content of the data set is lost, while too
many parameters means overfitting and the fit starts to repre-
sent the noise. A simple example is given in the upper part of
Fig. 1. The optimal fit is clearly at the border between both
extreme regimes. On the other hand, the values ofσ i are of-
ten poorly known or even unknown, and the optimal fit has
to rely to the appearance of such a plateau. Furthermore, it
is not always easy to recognize the existence of the plateau,
which can be obscured by multiple extrema.

Quite recently, the Durbin-Watson (Durbin and Watson,
1950) statistics was proposed as an alternative statistics for
the least-squares spline approximation of noisy data (Thijsse
et al., 1998). Basically, the merit function of the fit is given
by:

Q =

∑m−1
i=1 (di+1 − di)

2∑m
i=1 d2

i

, (4)

i.e. the ratio of two variances where the denominator is the
usual aggregate magnitude of residuals, while the numerator
measures the serial correlation between them. For reason-
ably smooth underlying functions, the evolution ofQ from
underfitting to overfitting regimes is easy to understand (see
Fig. 1). For underfitting cases, residuals are strongly cor-
related because two adjacent points tend to have the same
residual with respect to the fit (di+1 ' di andQ is closer to
0) . In the case of overfitting, residuals tend to be anticor-
related (di+1 ' −di andQ is closer to 4), as the fit rapidly
oscillates between neighbouring points. The optimal fit, for
which Q is about 2± 2

√
m

, corresponds to a minimal corre-

lation between residuals (
∑

i di+1di' 0) because they only
contain noise. A considerable advantage ofQ arises from its
relative insensitivity to the knowledge of theσ i , since these
appear both in the numerator and the denominator.

Keeping in mind that our goal is to globally approximate
smooth geophysical fields retrieved from space experiments,
we decided to develop the unknown function over a basis of
orthogonal functions. Excellent (but not unique) candidates
are Chebyshev polynomialsTk(u) = cos(k arccos(u)) (Press
et al., 1992) and, within a domain[xmin, xmax], f (x) may be
expanded as:

f (x) ≈

n∑
k=0

ckTk(u(x)), (5)

where

u(x) =
2x − (xmax + xmin)

(xmax − xmin)

, u ∈ [−1, 1]. (6)

In Fig. 2, we simulated a synthetic atmospheric transmit-
tance measured by an occultation experiment on which de-
tector shot noise (varying as the square root of the signal)
has been added. The least-squares linear problem associated
with Eq. (5) can be solved for increasing values ofn until the
valueQ = 2 (nominal) orQ+ = 2 +

2
√

m
(conservative) is

reached (forn ' 7). The resulting fitted curve has the de-
sired smoothness and it is able to capture the slope change
around 25 km. Considering largern values would only result
in overfitting (wavy structures) and possible ill-conditioning
of the linear system.

3 2-D MCR

It is possible to generalize the orthogonal function expansion
to the 2-D case by:

f (x, y) ≈

n∑
k=0

n−k∑
l=0

cklTk(u(x))Tl(v(y)) (7)

(Chebyshev polynomials could be replaced by spherical har-
monics if a full coverage of the globe is desired). A natural
way to consider the correlation between adjacent measure-
ment points is to perform a Delaunay triangulation of the
considered domain. For a given data pointi, we consider
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Fig. 1. Top: Transition from underfitting to overfitting for the 1-D case. Dots: experimental data. Dashed line: reality from which
experimental data were generated by adding a Gaussian noise of 0.2 amplitude. Full line: polynomial fit. Bottom: respective residuals and
associatedQ value (Eq. 4). From left to right, notice the evolution in the correlation of adjacent residuals.
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Fig. 2. A typical example of 1-D MCR fitting. Left: Evolution ofQ (Eq. 4) versusn (Eq. 5), the polynomial order of the fit. Right: A
synthetic transmittance signal with shot noise added (dots) and the optimal MCR fit (n = 7).
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Fig. 3. Test case TC1. Left: The exact field consisting of the sum of 2 Gaussian functions of amplitude 1. Middle: The same field, with
addition of random Gaussian noise (standard deviations0 = 0.2), sampled at 400 scattered locations. Right: reconstructed field by MCR
method (n = 10).

the list{1, 2, ...p(i)} of all neighbours, i.e. all points belong-
ing to a Delaunay triangle whose pointi is a vertex. For the
MCR statistics, we propose

Q =

∑m
i=1

∑p(i)

j=1(dij − di)
2∑m

i=1 p(i)d2
i

, (8)

wheredij refers to the residual of thej -th neighbour of point
i. This statistics has the same asymptotic properties as those
present in Eq. (4) after normalization with respect to the
numberp of neighbours surrounding the pointi. In case
of underfitting,dij ' di andQ almost vanish, while over-
fitting corresponds to anticorrelated residuals (dij ' −di)
and makesQ closer to 4 if the number of data points is large
enough. The optimal fit is achieved when the sum of prod-
ucts of neighbour residuals times the point residual, summed
over all points, approaches zero, i.e.Q ' 2 ±

2
√

m
.

An additional problem of the 2-D case is the large in-
crease in the number of coefficientsckl to compute, which
may cause severe ill-conditioning (Dierckx, 1993). It means
that the solution becomes extremely sensitive to the noise
amplitude even if the statistical criterion is fulfilled. There-
fore, it is necessary to introduce a regularization technique
(Hansen, 1992). IfA represents the design matrix of the
problem (hereafter, we will considerσ i = 1 in order to sim-
plify the notation)

A =


T0(u1)T0(v1) . . . T0(u1)Tn(v1) . . . Tn(u1)T0(v1)

T0(u2)T0(v2) . . .
...

...
...

T0(um)T0(vm) . . . T0(um)Tn(vm) . . . Tn(um)T0(vm)

 ,

(9)

the constrained linear inversion consists of minimizing the
Lagrangian merit function consisting of two quadratic forms

‖ Ac − b ‖
2

+λcT Uc, (10)

wherec andb, respectively stand for the vector of unknown
coefficientsckl and the vector ofm data points. The regu-
larization operatorU is aimed at measuring the total surface
smoothness by using direct partial differentiation of Eq. (7).
It is constructed from the smoothness measureη = cT Uc

given by Dierckx (1993)

η =

∫ 1

−1

∫ 1

−1

((
∂f

∂u

)2

+

(
∂f

∂v

)2
)

du dv (11)

and the minimization problem defined by expression (10) can
be algebrically solved:

c(λ) = (AT A + λU)−1AT b. (12)

Before investigating examples related to non-uniform
sampling in remote sensing, it is worth illustrating the full
algorithm by a simple test case (test case 1 = “TC1”) that
is represented in Fig. 3. A synthetic 2-D fieldf0(x, y) con-
sisting of 2 Gaussian functions of amplitude 1 has been per-
turbed by random Gaussian noise with a standard deviation
of s0 = 0.2. The noisy fieldfi(x, y) was sampled by a set of
400 measurements at random locations in the considered do-
main. The goal of the algorithm is twofold: to reconstruct the
unperturbed field at the sampling points and to construct the
best possible gridded field everywhere in the domain. If we
call f1 andfg the MCR estimated values at them sampling
locations and at themg grid nodes, respectively, the perfor-
mance can be estimated by means of the following quantities:

s = [

∑m
i=1(f1(i) − fi)

2

m
]
1/2 (13)

s1 = [

∑m
i=1(f1(i) − f0(i))

2

m
]
1/2 (14)

sg = [

∑mg

g=1(fg(g) − f0(g))2

mg

]
1/2, (15)
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Fig. 4. Q (Eq. 8) as a function ofn and log(λ) for test case TC1. Black isopleths and color scale refer to the value ofQ, with optimal value
for Q+ = 2.11 (black bold isopleth). White isopleths: fit errors1(n, λ) (Eq. 14) showing the clear existence of a minimum. Connected black
dots: the path followed by the MCR algorithm.

wheres is the estimation of the noise RMS (to be compared
with the true values0), s1 is the RMS error with respect to
the true field at the sampling locations (referred to by the
summation indexi) andsg is the RMS error with respect to
the true field at the grid nodes (indexg).

Like in the 1-D case, the algorithm proceeds by increas-
ing the value ofn until the conservative valueQ+ is reached
(Fig. 4). At this stage,n may be safely incremented by one or
two, in order to ensure a maximal sensitivity to data because
the regularization in Eq. (12) is not yet working (λ = 0). The
isopleths associated withQ (c(n, λ)) exhibit a characteristic
corner-shaped form that expresses the progressive transition
from a regime of high sensitivity to data and low smoothness,
to a regime of low sensitivity and high smoothness. The opti-
mal estimation off0, if it exists, should lie somewhere in the
corner region. Therefore, keepingn constant, the algorithm
iteratively increases the value ofλ by means of a standard
zero finding numerical scheme and computesQ (c(n, λ)) at
each step until theQ+ isopleth is reached again, which will
always be possible due to the corner-shaped form of the
curve. It should be noticed that all(n, λ) solutions lying in
the corner region can be considered as equivalent and the
present algorithm is a simple way to discover a cheap solu-
tion (with a low n value). Indeed, augmentingn along the
Q+ isopleth would increase the computational cost without
reducings1 and, eventually, the ill-conditioning would be-
come redhibitory. Also, the technique to discover a quasi-
optimal (n, λ) doublet is not unique. For instance, it would
also be possible to detect the maximal curvature along the
Q+ isopleth when bothn and its associatedλ value are
varied, as done in many regularization problems (Hansen,
1992). However, this procedure turns out to be more expen-
sive.

In Fig. 3, it can be seen that the proposed MCR algorithm
is quite effective (s1 ' s0/4) in recovering the unperturbed
field in presence of important noise.

4 Three competing methods

In order to evaluate the efficiency of the MCR algorithm, it is
worth comparing its performance with three other published
algorithms applied to the same test cases.

The first one is the Loess (Cleveland and Devlin, 1988)
method (referred to as LR,) in which the smoothing is lo-
cally performed by using a bivariate cubic polynomial fitted
to an adjustable number of nearest neighbours. In the sur-
face fitting commercial software (TableCurve 3DTM ) that we
have used, interpolation on the regular grid is performed by
locally-weighted fitting with the Renka triangulation-based
procedure (Renka, 1996) applied to the smoothed values.
When the number of neighbours is interactively increased by
the user, the degree of smoothing varies from overfitting to
underfitting. In the comparisons hereafter, we have selected
the optimal number that produces an exact value for the es-
timation of s0. This gives a lower bound of the smoothing
error caused by the LR method.

The second method is the biharmonic spline scheme (BS)
proposed by Sandwell (1987), in which Green functions of
the biharmonic operator are used for minimum curvature in-
terpolation of irregularly spaced data points. The interpo-
lating surface is a linear combination of Green functions
centered at each data point. By reducing the number of
model parameters, noisy data can be fitted in a least-squares
sense due to the minimimal curvature property of any solu-
tion of the biharmonic equation. The interpolation scheme
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Fig. 5. Test case TC2: Left: Exact ozone VMR field at 30 mbar (color scale maps linearly from 2 to 5 ppm) with superimposed SAGE II
geolocations. Right: Reconstructed field by MCR (n = 14).

Table 1. Results of test cases TC1, TC2, TC3 for the LR, BS, K and MCR methods. The value ofs is normalized by the exact value for the
considered test. Value ofs1 andsg are normalized to the best value of the respective test

s s s s s1 s1 s1 s1 sg sg sg sg

LR BS K MCR LR BS K MCR LR BS K MCR

TC1 - - .988 .970 1.270 - 1.083 1.000 1.460 3.679 1.048 1.000
TC2 - - .906 .922 1.284 - 1.055 1.000 1.235 1.782 1.029 1.000
TC3 - - .984 .994 1.095 - 1.000 1.082 1.000 2.359 1.082 1.033

reproduces the input data at the sampling points so that the
smoothing error has only been computed at the regular grid
nodes. For this comparison test, we have used the routine
“grid data” as implemented in the numerical software pack-
age MATLABTM (release 12).

The third competing method is “kriging” which has been
extensively used in geophysics (see, e.g. Tranchant and Vin-
cent, 2000). Briefly, kriging is a minimum variance method
closely connected with statistical interpolation techniques
(Daley, 1991). The analyzed field is considered as being re-
ducible to the sum of a mean value, the non-stationary ex-
pectation of the field, and a random fluctuation with a zero
expectation. A predictor is then constructed from a linear
combination of data values whose coefficients minimize the
estimation variance, with a constraint ensuring that the esti-
mator is unbiased. The kriging system of equations is found
to relate the optimal coefficient set and the covariance be-
tween the sample points, which is assumed to depend only
on the interdistance. The covariance is then computed by
means of a “semi-variogram” and fitted by a predefined the-
oretical model. In the comparaison exercise, we have used
the EasyKrig code (version 2.1) developed by Chu (2000).
We also made the assumption that the sampled geophysi-
cal field was quasi-stationary, which allows one to use ordi-
nary kriging. In case of suspected non-stationarity, universal
kriging should be preferred. Kriging is a powerful statisti-
cal method, and robust techniques have been proposed to fit

the semi-variograms (Journel and Huijbregt, 1989), includ-
ing the possible use of anisotropic forms if privileged direc-
tions are expected (see Tranchant and Vincent, 2000, for an
extended discussion). Here, however, we do assume that the
use of an Gaussian-linear isotropic semi-variogram is accu-
rate enough. In Table 1, we present the results of the com-
parison ofs, s1 andsg (Eqs. 13–15) obtained by MCR and
by the competing methods for test cases TC1, TC2, TC3 (the
latter two are described hereafter). Fors1 and sg, reported
values have been normalized to the best score for each test
case, whereas fors the normalization was performed with
respect to the exact value. For TC1, MCR is clearly supe-
rior to the LR and BS methods. It is also slightly superior to
kriging, except for the estimation of noise standard deviation.

5 Two geophysical examples in the Earth’s remote
sounding by space experiments

The second test case (“TC2”) concerns the reconstruction of
the ozone field at 30 mbar in a time-latitude domain. The ex-
ample has been conceived from geolocations inspired by the
well-known SAGE II experiment (Chu et al., 1989; Mauldin
III L. E. et al., 1985), which has furnished an invaluable se-
ries of atmospheric altitude profiles of ozone, nitrogen diox-
ide, aerosols and water vapour. SAGE is a typical solar
occultation experiment that was launched in October 1984
on the Earth Radiation Budget Satellite into a 56 degree
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Fig. 6. Test case TC3: Left: Exact NO2 columns (color scale maps linearly from 2 to 5 1015 mol cm−2) with superimposed GOME pixels
for 15 Sep 1999. Right: Reconstructed field by MCR (n = 10).

inclination orbit. It makes measurements primarily at mid-
dle and low latitudes, but reaches the polar regions in both
hemispheres several times a year due to the combination of
the orbital plane precession and of the seasonal effect (see
Fig. 5). About 15 sunset and 15 sunrise measurements are
performed per day at a quasi-constant latitude. Over the pe-
riod of about 1 month, the latter slowly varies along sinu-
soidal tracks and extends over a seasonally dependent alti-
tude of approximately 70◦ S to 70◦ N. In test case TC2, we
arbitrarily selected the SAGE geolocations of year 1992.

The assumed geophysical field of interest is the ozone vol-
ume mixing ratio (VMR) and, for the sake of realism, we
have constructed the “exact” field from the ozone climatol-
ogy published by Fortuin and Kelder (1998). Daily ozone
VMR have been averaged and they were assigned a mea-
surement random error of 2%, based on the published values
of Cunnold et al. (1989). From a data set of 638 measure-
ments, the test consisted in the reconstruction of the ozone
field on a regular grid having a 0.2 month× 2 degree resolu-
tion. It can be seen in Fig. 5 that the MCR method performs
well (the optimal order was found to ben = 14 with a total
of 120 coefficients) and that fine structures are correctly ex-
tracted within domains of missing data (e.g. around months
5 and 7 in tropical regions). Also, at high latitudes, partial
information about well-known ozone minima is extracted by
the algorithm, although data are scarce or even inexistent.
Even by using a basis of spherical harmonics (or geodesic
distances for kriging), it is very important to keep in mind
that an interpolating/smoothing algorithm is not able to pro-
duce information not measured by the experiment. An im-
portant feature of ozone field is located near the edge of the
south polar vortex (see, for instance, Wauben et al., 1997;
McIntyre, 1989; Vincent and Tranchant, 1999) which is ex-
terior to the SAGE sampling domain. Nevertheless, MCR

gives valuable, although incomplete information, over this
region by smoothly extrapolating the data points. In Table 1,
MCR turns out to be the best estimator ofs, s1 andsg.

The third test case (“TC3”) deals with NO2 columns
retrieved from the Global Ozone Monitoring Experiment
(GOME) on board the ESA ERS-2 satellite (Burrows et al.,
1999) that was launched into a polar heliosynchronous or-
bit. The instrument is a nadir-viewing UV-visible spectrom-
eter and allows for a global coverage in about 3 days. The
test case has been built by assuming that the true geophysi-
cal field is the monthly averaged NO2 columns for Septem-
ber 1999 above Europe and North Africa (longitude 30◦ W–
60◦ E, latitude 0◦ -70◦ N) (see Fig. 6). According to Lambert
et al. (1999), a random retrieval error of 15% has been added
to produce the measured data for one observation day (15
September 1999).

Test case TC3 consists of recovering the true field from
data (820 values) representing about one-third of the full cov-
erage, with clustered pixels along the satellite tracks. This
was achieved by using MCR with an optimaln = 10 (66 co-
efficients) and reconstruction was performed on a grid hav-
ing a 2.5 deg. (in longitude)× 1.25 deg. (in latitude) reso-
lution. By inspecting Fig. 6, it is clear that the reconstruc-
tion is not as accurate as for TC2 case. For instance, the
pollution peak above western Europa is well identified but
not separated into local maxima above Germany and North
Italy. Fine structures above the Black Sea have also been
smoothed out. Actually, the lower spatial resolution obtained
by the reconstruction algorithm is a consequence of the quite
high noise level and not of the sampling geometry. In com-
parison with alternative methods (Table 1), it is interesting
to observe that MCR performs sligthly worse than KR at
the sampling locations, due to the locally very high corre-
lation between GOME adjacent pixels, whereas it is better
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for interpolating/extrapolating on the regular grid. For test
case TC3, LR gives the best results on the grid, if we remem-
ber that it should be fed with the exact noise estimation that
could be delivered by MCR.

6 Conclusions

Surface fitting of noisy data from scattered locations can be
performed by various methods. The final accuracy of the
reconstruction obviously depends on the algorithm intrinsic
error, the geometrical distribution of samples and the noise
level of the observations.

In this work, we have developed a new algorithm capa-
ble of producing an optimal fit in the sense that a trade-off
is achieved between underfitting where information is lost
and overfitting where spurious structures are induced by ex-
perimental noise. The 2-D MCR method is based on mini-
mal correlation of minimal residuals, associated to a standard
regularization technique. The method is fast, quite robust and
easy to implement.

MCR performs well with respect to existing methods for
geophysical applications. In particular, we have tested its ef-
ficiency for three kinds of sampling geometries: a randomly
dispersed data set (TC1), a line type data set (TC2) and a
clustered data set (TC3) for different levels of noise. The
method is, therefore, well suited for interpolation in vali-
dation campaigns or for the construction of climatological
fields.

In future work, we will investigate the generalization of
the algorithm to higher dimensions. Clear geophysical ob-
jectives will include interpolation between vertical profiles
observed at different locations and temporal evolution of 2-
D fields.
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