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Abstract. During the recovery phase of geomagnetic storms,mechanism for this process has been suggested by several re-
the flux of relativistic &2 MeV) electrons at geosynchronous searchers (e.g. Freeman et al., 1998; Nakamura et al., 1998;
orbits is enhanced. This enhancement reaches a level that c&bara et al., 2000b), there is still considerable uncertainty
cause devastating damage to instruments on satellites. Tabout the details.

predict these temporal variations, we have developed neural yigh fiux levels of relativistic electrons can cause irrepara-
network models that predict the flux for the period 1-12h pje gamage to the instruments on satellites (Gussenhoven et
ahead. The electron-flux data obtained during storms, fromy| 1991: Baker et al., 1997), and this practical consequence
the Space Environment Monitor on board a Geostationaryyt the flux enhancement has promoted the development of
Meteorological Satellite, were used to construct the modelempirical models. Nagai (1988) designed a linear prediction
Various combinations of the input parametets, AL,  fjter for the prediction of daily averages of electron flux at
D, and ©D;; were tested (wher& denotes the summa- - GEQ, using thek , index as an input. This model predicted
tion from the time of the minimunD,). It was found that  gyccessfully the electron flux on a daily scale. Koons and
the model, including= AL as one of the input parameters, Gorney (1991) also made predictions of the daily average

can provide some measure of relativistic electron-flux pre-f,x at GEO using artificial neural networks (ANN).
diction at geosynchronous orbit during the recovery phase.

We suggest from this result that the relativistic electron-flux
enhancement during the recovery phase is associated with r
curring substorms aftdd;, minimum and their accumulation
effect.

Modeling using ANN has predicted successfully the
g_nergetic—electron flux with a time resolution of 1 h (Stringer
et al., 1996; Freeman et al., 1998). Although the energy
range of the electrons for these two models is different (3—
5MeV for Stringer et al.,, 1996 and 100keV to 1.5MeV
Key words. Magnetospheric physics (energetic particles, for Freeman et al., 1998), both models used Eqgindex,
trapped; magnetospheric configuration and dynamics; stormand the electron flux as input data. Stringer et al. (1996)
and substorms) used the current flux of energetic electrons (3-5MeV), and
those which existed 1 to 3h earlier. Freeman et al. (1998)
used the current low-energy (35keV) electron flux, plus
those existing 15 min and 75 min earlier, to predict the en-
ergetic (100keV to 1.5MeV) electron flux for the storm of

During the recovery phase of geomagnetic storms, the flus—4 November 1993. It would appear that the high perfor-
of relativistic (~2MeV) electrons at geostationary orbits Mance of these models is due to the inclusion of the varia-
(GEO) is enhanced. This enhancement often reaches a leviipn of electrons existing earlier as data. Since the use of the
that is higher than the prestorm value (e.g. Nagai, 1988m0del has important practical qpplications,.it not only needs
Baker et al., 1997; Obara et al., 2000a). This enhancemeri® N€lP us understand the physical mechanism, but also must
is not accounted for by the flux of energetic electrons in thelS€ Widely available input parameters. In this paper, we show
interplanetary medium alone (Li et al., 1997). This implies ANN modelling of the relativistic-electron flux for the recov-
that some energization or transportation process operates djfy Phase is possible usingA L (the summation oft L from

the energetic electrons in the magnetosphere. Although thi1€ time ofDs; minimum in the main phase), and we suggest
the significance of recurring substorms in the flux enhance-

Correspondence tdS. Taguchi (taguchi@ice.uec.ac.jp) ment.

1 Introduction
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(a) GMS-4/SEM 1993/9/12-18 (b) GMS-4/SEM 198011-17
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Fig. 1. Examples of enhancements of relativistieMeV) electron flux observed by Geostationary Meteorological Satellitelant L
indices(a) for the the storm of 12—-18 September 1993, évdor the storm of 1-7 January 198%.D;; andX AL are also plotted, where

¥ denotes the summation from the time of the minimDm. The minimumDy; is represented with a dashed vertical line, and a solid line
represents the time for the peak electron flux for the six-day period aftdytheinimum.

2 AL index as model input Y AL between the two sets of conditions is rather different:
in Fig. 1a, the magnitude & AL about 2 days after thB,,
We used data for relativistic{2 MeV) electrons that were minimum (at the solid vertical line) is more than three times
obtained from the Space Environment Monitor of Geosta-as large as its magnitude at the same time in Fig. 1b. These
tionary Meteorological Satellite (GMS), located at about facts suggest thatL and X AL serve as proxies for factors
14Q E. From the GSM data between August 1978 and Au-that influence the peak electron flux.
gust 1998, we selected 29 storm events, by examining the
D;, index variations. Figure 1 shows two examples from the  For each storm event, we examined the peak electron flux
29 storms, where the logarithms of electron flix, XDy;  for the six-day period after th®,, minimum, and the corre-
AL, andX AL are plotted from top to bottom, respectively. sponding magnitude of AL. Figure 2 shows scatter plots
FortheAL andX AL, we used the hourly averagd. index.  of the electron flux (logarithmic scale) against the magnitude
Figure 1a shows that the electron flux reaches a maximunof X AL, for all 29 storm cases. Although log flux values
of more than 1 count cnt2sec tsr IMeV—1 about 2 days  greater than 4 occur for a wide range| BfA L| (from 18 000
after the D;; minimum. In Fig. 1b, the electron flux about to 43000), the electron flux tends to be large with increas-
2 days after the,; minimum is still low. When we compare ing|XAL|. The correlation coefficient (CC) is calculated to
Dy, ¥ Dy, AL, andX AL in the region of the flux maximum be 0.64. This rough correlation supports the proposition that
for Fig. 1a with those for Fig. 1b, it is evident that there is a AL may be a measure of the control factors in determin-
significant difference. In Fig. 114 L does not exceed 500 nT ing the peak electron flux. We also checke&ib,; shows
after theD,, minimum, whereas for Fig. 1a, such large values a similar correlation, but a clear relation was not identified
of AL occur several times. Consequently, the magnitude ofCC = 0.11).
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Fig. 2. Scatter plots of the peak electron flux versus the absolute
value of AL for all 29 events. The solid line indicates the least-
squares fit.

Fig. 3. Architecture of the optimized Elman neural network.

3 ANN model construction and performance

GMS-4/SEM 1985/10/05-09  Observed — Predicted- - -

In order to construct an ANN model for the relativistic elec-
tron flux, we adoptedAL, AL, Dy; Dy, and UT (=
LT—9h for GMS) as input parameters. THg, index is 4r
known to be one of the important parameters that determine ;5
the maximum electron flux (e.g. Reeves, 1998). The impor-
tance of the history oDy, has been suggested by Stringer §
et al. (1996), and Freeman et al. (1998), although simple£ 25}
comparison betweeR D,; and the peak electron flux does w
not necessarily identify a clear relation between them. UT&
is used in the form of sitUT/24), in order to reproduce a
daily variation (or LT dependent structure) of the flux. The 1
recent history of the five parameters was fed to the model
We used an Elman ANN, which is known as a two-layer
back-propagation network with feedback connections from  © ———— 0107 10708 PRy
the hidden layer to the input layer (Elman, 1990; Wu and

Lundstedt, 1997; Kugblenu et al., 2001). The hidden layergig 4 The storm of 5-9 Oct 1985 for which the best predictability
has the context neurons, as well as the true input NeuroNgyas obtained. The solid and dashed curves represent the observa-
and the context neurons act as an integrator of temporal intion and one-hour forward prediction, respectively.

formation dating back to its initial state; i.e. this gives the

network a nonlinear memory capacity.

For the data set for the network training, we selected nineremaining 20 storm events (2146 h). It was found that the op-
of the 29 storm events in such a manner that the trainingimized ANN had the design shown in Fig. 3, i.e. the number
data set could have various types of flux variations. Theof hidden neurons was 15. This ANN model produced both
nine events consisted of storms on 28 August 1978, 1 Janthe highest average value of CC (between the predicted and
uary 1980, 6 February 1980, 3 November 1985, 29 Novem-observed variations), and the highest prediction efficiency
ber 1985, 4 June 1993, 4 November 1993, 4 April 1994, andPE) for the 20 test cases. The averages values for CC and
17 April 1994. A total of 1043 h from these nine events was PE were 0.84 and 0.71, respectively. The average of the RMS
used for the training. As the learning parameters for train-error was 0.47. Figure 4 shows a storm for which this ANN
ing, we chose an RMS error goal of 0.01, an initial adaptivemodel produced the highest CC (0.97) and PE (0.86) of all
learning ratio of 0.001, an increasing rate-of-learning ratiothe 20 cases. The prediction (dashed curve) follows the ob-
of 1.05, a decreasing rate-of-learning ratio of 0.7, a momenservation (solid curve) reasonably well, although the model
tum constant of 0.95, an error ratio of 1.04, and used 500Qoes not capture the steepness of the rise in flux on 5 October.
learning cycles. We also made some other training data sets by adding sev-

First, we constructed the model for one-hour forward pre-eral storms to the nine events, and checked the ANN model’s
diction. The performance of the model was then evaluatecerformance. The increase in the number of the training data
by comparing the predictions with the observations for thesets did not necessarily improve the prediction performance
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100 - 1.0 accurately the electron flux. Our model is not inconsistent
= with their result. Our model include® D,; and XAL as
80 08 3 . .
. s inputs. Although neural network feedback of our model is
— MH\ — .
£ 60 — 106y a one-hour step (Fig. 3), these two parameters can have the
@ e Y ;é}g history of Dy; and AL from the time of Dy, minimum. The
40 R maximum of the electron flux usually occurs a few days or
=] « . .
20 02 2 more afterD;; minimum, and this means th@,; and AL
00 - for several days of inputs are used to model.
1 2 3 4 5 6 7 8 9 10 11 12
ahead[h]

—=u— Prediction Efficiency .
—+ Root Mean Square Error 4 Concluding remarks

Fig. 5. Change of prediction efficiency (PE) and root-mean-squareWe have predicted successfully the electron flux using an El-
error (RMSE) for the period 1 to 12 h ahead. man recurrent-ANN with inputs oAL, AL, XDy, Dy,

and UT, or with inputs oE AL, X Dy, and UT. The feedback

connections of the ANN can model effectively the enhance-
of the model. However, when we reduced the number of thement of the electron flux as a function of the above input
training data sets, the performance became worse. Althougparameters, in particulab; AL. The substorm effect repre-
this may be dependent on which storms are included in thesented by= AL (i.e. the accumulation effect AL history
training data sets, it is likely that the selected nine events forafter D, minimum) has a significance influence on the flux
the training cover various types of flux enhancements. enhancement in the recovery phase.

To identify which input parameters were the most crucial, It has been accepted that substorms occur more often dur-
we droppedD;, and AL from the input parameters, and de- ing southward IMF than northward IMF (e.g. Kamide et al.,
signed a new ANN. In this model, PE was approximately 1977), although all substorms are not triggered by southward
0.71, the same as for the original model. Then, we alsaurnings of IMF (e.g. Rostoker, 1983; Lyons et al., 1997).
droppedX Dy, from the inputs, i.e. the model had only two This may appear to indicate thatAL effects simply re-
inputs, XAL and UT. For this model, PE was about 0.68, flect the accumulation effect of southward IMF. It should
and still close to the original value, indicating that the effect be noted, however, thatiL| tends to be large with the in-
of £ Dy, is not very strong. Next, we droppedlAL instead  crease in solar wind speed, as well as with the increase in the
of Dy, i.e. two input parameterg; Dy;, and UT, were used. southward IMF component (e.g. Maezawa and Murayama,
For this model, the prediction efficiency became 0.47, which1986). They showed that velocity dependence of Aie
is much lower than the original efficiency of 0.71. We also index is steeper than linear, approximately proportional to
designed a model with only thEA L index as the input pa- V2. Hence, our result that the substorm effect represented by
rameter, i.e. no UT input. The prediction efficiency was 0.64, S AL has a significance influence on the flux enhancement
which is just below the value of 0.68 that was obtained us-is not inconsistent with the result obtained by Paulikas and
ing the model with2 AL and UT as inputs. From these re- Blake (1979), who showed that there is a good correlation
sults,X AL proved to be the most crucial factor for the flux- between the solar wind velocity and the MeV electron flux.
enhancement. It should be noted, however, that@id. is Some recent papers (e.g. Li et al., 2001) also have indicated
the quantity afteD;, minimum, by which storm times were the significance of the solar wind speed for the electron flux.
identified in the first place. Several researchers (e.g. Baker et al., 1997; Nakamura et

Using the ANN model with inputs oEAL, XDy, and  al., 1998; Obara et al., 2000b) have suggested that during
UT, we attempted to predict the electron fluxes for the pe-the main phase, the inward transport of intermediate-energy
riod 2 to 12 h ahead. The results are summarized in Fig. 5electrons occurs, and that seed electrons form. This main-
Although PE gradually decreased from 0.71 as the predicphase transport process may be related to substorm activity,
tion time increased, it was 0.60 or more for the predictionssuch as substorm injections. Our results suggest that as far as
up to 9h. Similar ratios and trends were obtained with thethe flux level in the recovery phase is concerned, such a sub-
five-input model. storm process in the main phase of the storm is not important.

If real-time Dy, and AL are available, our model can be Rather, recurring substorms after the storm maximum, or the
used for real-time operation. For this, it should be noted thatelated magnetospheric state, determine to what extent the
the model starts to produce outputs several hours after thelectrons, which presumably formed in the main phase, are
time of Dy, minimum, since it is not untiD;, recoversto a  energized.
certain degree that we can determine the timeégf mini-

mum. However, this delay does not cause a significant probAcknowIedgementsAssistance of computational aspects by

lem for the flux prediction, since the flux usually reaches ay ‘Njshimura is gratefully acknowledged. The relativistic electron
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