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Abstract. During the recovery phase of geomagnetic storms,
the flux of relativistic (>2 MeV) electrons at geosynchronous
orbits is enhanced. This enhancement reaches a level that can
cause devastating damage to instruments on satellites. To
predict these temporal variations, we have developed neural
network models that predict the flux for the period 1–12 h
ahead. The electron-flux data obtained during storms, from
the Space Environment Monitor on board a Geostationary
Meteorological Satellite, were used to construct the model.
Various combinations of the input parametersAL, 6AL,
Dst and 6Dst were tested (where6 denotes the summa-
tion from the time of the minimumDst ). It was found that
the model, including6AL as one of the input parameters,
can provide some measure of relativistic electron-flux pre-
diction at geosynchronous orbit during the recovery phase.
We suggest from this result that the relativistic electron-flux
enhancement during the recovery phase is associated with re-
curring substorms afterDst minimum and their accumulation
effect.
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1 Introduction

During the recovery phase of geomagnetic storms, the flux
of relativistic (>2 MeV) electrons at geostationary orbits
(GEO) is enhanced. This enhancement often reaches a level
that is higher than the prestorm value (e.g. Nagai, 1988;
Baker et al., 1997; Obara et al., 2000a). This enhancement
is not accounted for by the flux of energetic electrons in the
interplanetary medium alone (Li et al., 1997). This implies
that some energization or transportation process operates on
the energetic electrons in the magnetosphere. Although the
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mechanism for this process has been suggested by several re-
searchers (e.g. Freeman et al., 1998; Nakamura et al., 1998;
Obara et al., 2000b), there is still considerable uncertainty
about the details.

High flux levels of relativistic electrons can cause irrepara-
ble damage to the instruments on satellites (Gussenhoven et
al., 1991; Baker et al., 1997), and this practical consequence
of the flux enhancement has promoted the development of
empirical models. Nagai (1988) designed a linear prediction
filter for the prediction of daily averages of electron flux at
GEO, using theKp index as an input. This model predicted
successfully the electron flux on a daily scale. Koons and
Gorney (1991) also made predictions of the daily average
flux at GEO using artificial neural networks (ANN).

Modeling using ANN has predicted successfully the
energetic-electron flux with a time resolution of 1 h (Stringer
et al., 1996; Freeman et al., 1998). Although the energy
range of the electrons for these two models is different (3–
5 MeV for Stringer et al., 1996 and 100 keV to 1.5 MeV
for Freeman et al., 1998), both models used theDst index,
and the electron flux as input data. Stringer et al. (1996)
used the current flux of energetic electrons (3–5 MeV), and
those which existed 1 to 3 h earlier. Freeman et al. (1998)
used the current low-energy (35 keV) electron flux, plus
those existing 15 min and 75 min earlier, to predict the en-
ergetic (100 keV to 1.5 MeV) electron flux for the storm of
3–4 November 1993. It would appear that the high perfor-
mance of these models is due to the inclusion of the varia-
tion of electrons existing earlier as data. Since the use of the
model has important practical applications, it not only needs
to help us understand the physical mechanism, but also must
use widely available input parameters. In this paper, we show
ANN modelling of the relativistic-electron flux for the recov-
ery phase is possible using6AL (the summation ofAL from
the time ofDst minimum in the main phase), and we suggest
the significance of recurring substorms in the flux enhance-
ment.
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Fig. 1. Examples of enhancements of relativistic (>2 MeV) electron flux observed by Geostationary Meteorological Satellite andDst /AL

indices(a) for the the storm of 12–18 September 1993, and(b) for the storm of 1–7 January 1980.6Dst and6AL are also plotted, where
6 denotes the summation from the time of the minimumDst . The minimumDst is represented with a dashed vertical line, and a solid line
represents the time for the peak electron flux for the six-day period after theDst minimum.

2 AL index as model input

We used data for relativistic (>2 MeV) electrons that were
obtained from the Space Environment Monitor of Geosta-
tionary Meteorological Satellite (GMS), located at about
140◦ E. From the GSM data between August 1978 and Au-
gust 1998, we selected 29 storm events, by examining the
Dst index variations. Figure 1 shows two examples from the
29 storms, where the logarithms of electron flux,Dst 6Dst

AL, and6AL are plotted from top to bottom, respectively.
For theAL and6AL, we used the hourly averageAL index.

Figure 1a shows that the electron flux reaches a maximum
of more than 104 count cm−2sec−1sr−1MeV−1 about 2 days
after theDst minimum. In Fig. 1b, the electron flux about
2 days after theDst minimum is still low. When we compare
Dst , 6Dst AL, and6AL in the region of the flux maximum
for Fig. 1a with those for Fig. 1b, it is evident that there is a
significant difference. In Fig. 1b,AL does not exceed 500 nT
after theDst minimum, whereas for Fig. 1a, such large values
of AL occur several times. Consequently, the magnitude of

6AL between the two sets of conditions is rather different:
in Fig. 1a, the magnitude of6AL about 2 days after theDst

minimum (at the solid vertical line) is more than three times
as large as its magnitude at the same time in Fig. 1b. These
facts suggest thatAL and6AL serve as proxies for factors
that influence the peak electron flux.

For each storm event, we examined the peak electron flux
for the six-day period after theDst minimum, and the corre-
sponding magnitude of6AL. Figure 2 shows scatter plots
of the electron flux (logarithmic scale) against the magnitude
of 6AL, for all 29 storm cases. Although log flux values
greater than 4 occur for a wide range of|6AL| (from 18 000
to 43 000), the electron flux tends to be large with increas-
ing |6AL|. The correlation coefficient (CC) is calculated to
be 0.64. This rough correlation supports the proposition that
6AL may be a measure of the control factors in determin-
ing the peak electron flux. We also checked if6Dst shows
a similar correlation, but a clear relation was not identified
(CC = 0.11).
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Fig. 2. Scatter plots of the peak electron flux versus the absolute
value of6AL for all 29 events. The solid line indicates the least-
squares fit.

3 ANN model construction and performance

In order to construct an ANN model for the relativistic elec-
tron flux, we adoptedAL, 6AL, Dst 6Dst , and UT (=
LT−9 h for GMS) as input parameters. TheDst index is
known to be one of the important parameters that determines
the maximum electron flux (e.g. Reeves, 1998). The impor-
tance of the history ofDst has been suggested by Stringer
et al. (1996), and Freeman et al. (1998), although simple
comparison between6Dst and the peak electron flux does
not necessarily identify a clear relation between them. UT
is used in the form of sin(UT/24), in order to reproduce a
daily variation (or LT dependent structure) of the flux. The
recent history of the five parameters was fed to the model.
We used an Elman ANN, which is known as a two-layer
back-propagation network with feedback connections from
the hidden layer to the input layer (Elman, 1990; Wu and
Lundstedt, 1997; Kugblenu et al., 2001). The hidden layer
has the context neurons, as well as the true input neurons,
and the context neurons act as an integrator of temporal in-
formation dating back to its initial state; i.e. this gives the
network a nonlinear memory capacity.

For the data set for the network training, we selected nine
of the 29 storm events in such a manner that the training
data set could have various types of flux variations. The
nine events consisted of storms on 28 August 1978, 1 Jan-
uary 1980, 6 February 1980, 3 November 1985, 29 Novem-
ber 1985, 4 June 1993, 4 November 1993, 4 April 1994, and
17 April 1994. A total of 1043 h from these nine events was
used for the training. As the learning parameters for train-
ing, we chose an RMS error goal of 0.01, an initial adaptive
learning ratio of 0.001, an increasing rate-of-learning ratio
of 1.05, a decreasing rate-of-learning ratio of 0.7, a momen-
tum constant of 0.95, an error ratio of 1.04, and used 5000
learning cycles.

First, we constructed the model for one-hour forward pre-
diction. The performance of the model was then evaluated
by comparing the predictions with the observations for the

Fig. 3. Architecture of the optimized Elman neural network.

Fig. 4. The storm of 5–9 Oct 1985 for which the best predictability
was obtained. The solid and dashed curves represent the observa-
tion and one-hour forward prediction, respectively.

remaining 20 storm events (2146 h). It was found that the op-
timized ANN had the design shown in Fig. 3, i.e. the number
of hidden neurons was 15. This ANN model produced both
the highest average value of CC (between the predicted and
observed variations), and the highest prediction efficiency
(PE) for the 20 test cases. The averages values for CC and
PE were 0.84 and 0.71, respectively. The average of the RMS
error was 0.47. Figure 4 shows a storm for which this ANN
model produced the highest CC (0.97) and PE (0.86) of all
the 20 cases. The prediction (dashed curve) follows the ob-
servation (solid curve) reasonably well, although the model
does not capture the steepness of the rise in flux on 5 October.

We also made some other training data sets by adding sev-
eral storms to the nine events, and checked the ANN model’s
performance. The increase in the number of the training data
sets did not necessarily improve the prediction performance
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Fig. 5. Change of prediction efficiency (PE) and root-mean-square
error (RMSE) for the period 1 to 12 h ahead.

of the model. However, when we reduced the number of the
training data sets, the performance became worse. Although
this may be dependent on which storms are included in the
training data sets, it is likely that the selected nine events for
the training cover various types of flux enhancements.

To identify which input parameters were the most crucial,
we droppedDst andAL from the input parameters, and de-
signed a new ANN. In this model, PE was approximately
0.71, the same as for the original model. Then, we also
dropped6Dst from the inputs, i.e. the model had only two
inputs, 6AL and UT. For this model, PE was about 0.68,
and still close to the original value, indicating that the effect
of 6Dst is not very strong. Next, we dropped6AL instead
of Dst , i.e. two input parameters,6Dst , and UT, were used.
For this model, the prediction efficiency became 0.47, which
is much lower than the original efficiency of 0.71. We also
designed a model with only the6AL index as the input pa-
rameter, i.e. no UT input. The prediction efficiency was 0.64,
which is just below the value of 0.68 that was obtained us-
ing the model with6AL and UT as inputs. From these re-
sults,6AL proved to be the most crucial factor for the flux-
enhancement. It should be noted, however, that this6AL is
the quantity afterDst minimum, by which storm times were
identified in the first place.

Using the ANN model with inputs of6AL, 6Dst , and
UT, we attempted to predict the electron fluxes for the pe-
riod 2 to 12 h ahead. The results are summarized in Fig. 5.
Although PE gradually decreased from 0.71 as the predic-
tion time increased, it was 0.60 or more for the predictions
up to 9 h. Similar ratios and trends were obtained with the
five-input model.

If real-time Dst andAL are available, our model can be
used for real-time operation. For this, it should be noted that
the model starts to produce outputs several hours after the
time of Dst minimum, since it is not untilDst recovers to a
certain degree that we can determine the time ofDst mini-
mum. However, this delay does not cause a significant prob-
lem for the flux prediction, since the flux usually reaches a
maximum much later than such a short period of time.

Using a neural network, Koons and Gorney (1991) have
shown that up to 10 days of inputs are required to model

accurately the electron flux. Our model is not inconsistent
with their result. Our model includes6Dst and 6AL as
inputs. Although neural network feedback of our model is
a one-hour step (Fig. 3), these two parameters can have the
history ofDst andAL from the time ofDst minimum. The
maximum of the electron flux usually occurs a few days or
more afterDst minimum, and this means thatDst andAL

for several days of inputs are used to model.

4 Concluding remarks

We have predicted successfully the electron flux using an El-
man recurrent-ANN with inputs ofAL, 6AL, 6Dst , Dst

and UT, or with inputs of6AL, 6Dst , and UT. The feedback
connections of the ANN can model effectively the enhance-
ment of the electron flux as a function of the above input
parameters, in particular,6AL. The substorm effect repre-
sented by6AL (i.e. the accumulation effect ofAL history
afterDst minimum) has a significance influence on the flux
enhancement in the recovery phase.

It has been accepted that substorms occur more often dur-
ing southward IMF than northward IMF (e.g. Kamide et al.,
1977), although all substorms are not triggered by southward
turnings of IMF (e.g. Rostoker, 1983; Lyons et al., 1997).
This may appear to indicate that6AL effects simply re-
flect the accumulation effect of southward IMF. It should
be noted, however, that|AL| tends to be large with the in-
crease in solar wind speed, as well as with the increase in the
southward IMF component (e.g. Maezawa and Murayama,
1986). They showed that velocity dependence of theAL

index is steeper than linear, approximately proportional to
V 2. Hence, our result that the substorm effect represented by
6AL has a significance influence on the flux enhancement
is not inconsistent with the result obtained by Paulikas and
Blake (1979), who showed that there is a good correlation
between the solar wind velocity and the MeV electron flux.
Some recent papers (e.g. Li et al., 2001) also have indicated
the significance of the solar wind speed for the electron flux.

Several researchers (e.g. Baker et al., 1997; Nakamura et
al., 1998; Obara et al., 2000b) have suggested that during
the main phase, the inward transport of intermediate-energy
electrons occurs, and that seed electrons form. This main-
phase transport process may be related to substorm activity,
such as substorm injections. Our results suggest that as far as
the flux level in the recovery phase is concerned, such a sub-
storm process in the main phase of the storm is not important.
Rather, recurring substorms after the storm maximum, or the
related magnetospheric state, determine to what extent the
electrons, which presumably formed in the main phase, are
energized.
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