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Abstract. A new theory of the propagation of low power
electromagnetic test waves through the upper-hybrid reso-
nance layer in the presence of magnetic field-aligned plasma
density striations, which includes the effects of multiple scat-
ter, is presented. The case of sinusoidal striations in a cold
magnetoplasma is treated rigorously and then extended, in
an approximate manner, to the broad-band striation spectrum
and warm plasma cases. In contrast to previous, single scat-
ter theories, it is found that the interaction layer is much
broader than the wavelength of the test wave. This is due
to the combined electric fields of the scattered waves becom-
ing localised on the contour of a fixed plasma density, which
corresponds to a constant value for the local upper-hybrid
resonance frequency over the whole interaction region. The
results are applied to the calculation of the refractive index of
an ordinary mode test wave during modification experiments
in the ionospheric F-region. Although strong anomalous ab-
sorption arises, no new cutoffs occur at the upper-hybrid
resonance, so that in contrast to the predictions of previous
single scatter theories, no additional reflections occur there.
These results are consistent with observations made during
ionospheric modification experiments at Tromsø, Norway.

Key words. Ionosphere (active experiments; ionospheric ir-
regularities) Radio science (ionospheric propagation)

1 Introduction

One of the most frequently observed and consistently char-
acterised phenomena in experiments which modify the iono-
spheric F-region by means of high power radio waves is
the anomalous absorption of low power test waves that tra-
verse the heated volume. This effect was first discovered in
ionospheric modification (heating) experiments at Platteville
(Cohen and Whitehead, 1970). Soon after being reported,
anomalous absorption was explained in terms of the scat-
tering of electromagnetic waves into high frequency electro-
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static waves at the upper-hybrid resonance, due to the pres-
ence of small-scale plasma density irregularities (Graham
and Fejer, 1976; Vaskov and Gurevich, 1976). These irreg-
ularities, which are strongly elongated along the direction of
the geomagnetic field, are generated by a high power electro-
magnetic pump wave in the vicinity of its own upper-hybrid
resonance. They have been regularly observed by coherent
backscatter radars during ionospheric modification experi-
ments (Fialer, 1974; Minkoff et al., 1974; Hedberg et al.,
1983; Robinson et al., 1997). Moreover, Minkoff (1974)
has shown that the spectral power of the irregularities pro-
duced in heating experiments is primarly confined to cross-
field scale sizes in excess of 1 m. This result is also consistent
with the estimate of a few tens of km for the scale length of
the irregularities along the geomagnetic field line (Jones et
al., 1984), since their aspect ratio is expected to be of the
order of the ratio of the electron-neutral collision frequency,
νen , to the electron gyro-frequency,�. This ratio is around
a few times 10−4 in the F-region. The presence of these ir-
regularities, together with the fact that anomalous absorption
only occurs for ordinary mode (O-mode) test waves and only
for overdense conditions, provides strong evidence for this
field-aligned striations-upper-hybrid resonance (FASTUHR)
theory. Extraordinary mode (X-mode) test waves do not suf-
fer anomalous absorption, as expected from this theory, since
their reflection point occurs below the upper-hybrid reso-
nance height. For similar reasons, only an O-mode pump can
excite short-scale field-aligned plasma density irregularities
and only in overdense conditions.

In several previous papers (Graham and Fejer, 1976; Vas-
kov and Gurevich, 1976; Dysthe et al., 1983; Jones et al.,
1984), calculations of the level of anomalous absorption of
a low power test wave have been carried out using the FAS-
TUHR theory by straightforward energy considerations. This
involves equating the vertical decay of the Poynting flux of
the incident electromagnetic wave with the Joule loss rate per
unit volume due to scattering into electrostatic waves. Fur-
thermore, in these previous calculations, it was assumed that
the propagation of the electromagnetic wave was unaffected
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by the striations. This essentially means that changes in the
real part of the refractive index of the test wave, due to the
presence of the striations, were neglected, whilst those in the
imaginary part were not. Hagfors (1984) was the first to point
out the inconsistency of this assumption and showed that, in
fact, there was necessarily a strong change in the real part of
the refractive index which lead to a new cutoff frequency at
the upper-hybrid resonance. This cutoff, in principle, causes
reflection at the upper-hybrid resonance. Indeed, Mjølhus
(1985), using a formulation similar to that of Hagfors (1984),
demonstrated that the anomalous absorption level could not
exceed approximately 50% with the other 50% of the inci-
dent energy being reflected.

A further inconsistency in the anomalous absorption cal-
culations of Graham and Fejer, (1976), Vaskov and Gurevich
(1976), Dysthe et al. (1983) and Jones et al. (1984) is that a
WKB approximation is used to integrate the loss rate across
the resonance layer. The problem here is that the width of
the upper-hybrid layer for exactly field-aligned irregularities
is of the order of(νen/ω)H , whereω/2π is the test wave
frequency andH is the scale height of the background elec-
tron density. For typical F-region conditions, at altitudes
of around 200 km, this layer is only a metre or so wide.
This is much smaller than the wavelengths of the test waves,
which are typically several tens of metres. Under these con-
ditions the WKB approximation is invalid. It is, therefore,
rather surprising that values of anomalous absorption levels
obtained on the basis of the apparently inconsistent calcu-
lations of Graham and Fejer, (1976), Vaskov and Gurevich
(1976), Dysthe et al. (1983) and Jones et al. (1984) agree
well with the observations, whilst those of Mjølhus (1985) do
not. For example, levels of anomalous absorption observed at
the EISCAT high power facility at Tromsø can exceed 15 dB
(Stubbe et al., 1982), which are clearly well beyond the up-
per limit of around 3 dB predicted by Mjølhus (1985). On the
basis of their calculation, Jones et al. (1984) found that these
levels could be obtained with striation amplitudes, indicated
by the fractional deviation in electron density,δ, of around
1.5%. These striation amplitudes are also consistent with ob-
served backscatter radar cross sections (Minkoff, 1974).

The source of the difficulty is not too hard to find. All of
the above papers that deal with the FASTUHR theory effec-
tively assume a weak scatter process, so that the test wave
is scattered by a single Fourier component of the striations
into a single electrostatic mode. In the cold plasma approxi-
mation, this electrostatic mode is non-propagating. Even un-
der warm plasma conditions, the high frequency electrostatic
wave propagates only at the electron thermal speed which
is typically three orders of magnitude below the characteris-
tic speed of the electromagnetic wave in the ionospheric F-
region. Thus, wave energy piles up in the upper-hybrid layer
such that the electrostatic wave field is of the order ofδω/νen

times the incident test wave electric field. This factor can
be much greater than unity under F-region conditions, which
leads to a significant distortion of the refractive index of the
test wave in the vicinity of the upper-hybrid layer. Both the
real and imaginary parts are affected and hence, the possibil-

ity of new cutoffs, as demonstrated by Hagfors (1984). How-
ever, an electrostatic wave with an amplitude larger than the
original test wave can itself efficiently scatter into a further
high frequency electrostatic mode. Whenδω/νen is much
larger than unity, this process can repeat, in principle, ad
infinitum. Inhester et al. (1981) were the first to recognise
the importance of higher order scatter of this type in the in-
stability process by which the short-scale field-aligned stria-
tions are generated in the first place. Below, a new theory of
anomalous absorption of a low power test wave by the FAS-
TUHR process is developed, which completely takes into ac-
count scatter to effectively infinite order in a cold plasma. It
turns out that the higher order scatter has a remarkable ef-
fect on the nature of the resonance region. Instead of being
only a few metres wide, as predicted by the previous theo-
ries mentioned above, it becomes many hundreds of metres
wide and, therefore, is much broader than the wavelength of
a typical test wave. Furthermore, the change in the refractive
index in the vicinity of the upper-hybrid resonance is now
only of the order ofδ. With values ofδ typically less than
0.05, this has a negligible effect on the real part of the refrac-
tive index of the test wave and hence, there are, in fact, no
new cutoffs. However, the change to the imaginary part of
the refractive index is of the same order and this does lead
to significant absorption. Remarkably, this new calculation
predicts levels of anomalous absorption that are virtually the
same as those predicted by the apparently inconsistent, single
order scatter versions of the FASTUHR theory, cited above.
Vaskov (1988) has suggested that thermal effects are suffi-
cient to broaden the resonance region and can alleviate some
of the inconsistencies indicated above. However, as will be
demonstrated below, the resonance broadening due to higher
order scatter, even in a cold plasma approximation, is greater
than that due to thermal effects. The physical reasons for the
broadening due to higher order scatter, which will also be
dealt with below, are particularly interesting. They are asso-
ciated with the localisation of the combined electric fields of
the scattered waves. This leads to a remarkably simple inter-
pretation in which the interaction layer is actually distorted
in such a way that it follows the contours of the constant local
upper-hybrid frequency. Indeed, it is the localisation effect in
the cold plasma, rather than thermal effects, that ultimately
limits the width of the resonance.

Before developing an expression for the complex refrac-
tive index of electromagnetic waves due to FASTUHR with
multiple scattering effects in Sect. 3 below, the properties of
cold plasma waves are briefly reviewed in Sect. 2. The pur-
pose of this review is to clarify the physical processes that
need to be considered when coupling is introduced between
the electrostatic and electromagnetic waves. Anomalous ab-
sorption and propagation calculations appropriate to iono-
spheric modification experiments will be presented in Sect. 4.
A discussion of the physical basis of the new theory, together
with certain thermal effects will be treated in Sects. 5 and 6,
respectively.

It should be stressed that only the effects on low power test
waves are considered in the present paper and the striations
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are regarded as pre-existing features which are not affected
by the test wave. The case of a monochromatick-spectrum of
striations will be treated rigorously and then the broad-band
case will be dealt with by extending the monochromatic re-
sult in an approximate way. The related issue of the genera-
tion of the striations by a high power electromagnetic pump
wave will also be touched on briefly, but a detailed discus-
sion of this important topic is beyond the scope of the present
paper and will be treated in a future publication. Finally, the
topic of anomalous absorption in the vicinity of harmonics of
the electron gyro-frequency will not be treated in this paper,
since it is strictly beyond the scope of cold plasma theory.
It will, therefore, be assumed that the present theory applies
only to test waves with frequencies which are not close to the
harmonics of the electron gyro-frequency.

2 Electromagnetic waves and the upper-hybrid reso-
nance

The purpose of this section is to review the dispersive proper-
ties and field equations for electromagnetic and electrostatic
modes in a uniform cold magnetoplasma. Strictly speak-
ing, there are no propagating electrostatic waves in a cold
plasma. Instead, they correspond to resonances in which the
refractive index tends towards infinity (Stix, 1992). However,
these oscillations do have well-defined wavevectors and can
be treated as longitudinal waves propagating at speeds much
smaller than the speed of light. This approach, which follows
Hagfors (1984) and Mjølhus (1985), makes it possible to es-
tablish the relationship between the electric field and elec-
tric current oscillations for the two modes. This facilitates
a straightforward and clear extension to the coupled mode
case, in the presence of irregularities in the plasma density.
In addition, in what follows, only electron dynamics needs to
be considered and ion motion is neglected.

The usual Maxwell equations for oscillations in the elec-
tromagnetic fields and currents of the form exp[i(k · x−ωt)]

lead to the relation

n2
(
E(k, ω) − k1k1 · E(k, ω)

)
− E(k, ω)

=
iµ0c

2

ω
J (k, ω) (1)

wheren, E(k, ω) andJ (k, ω) are the general refractive in-
dex, electric field and current density, respectively. Also in
Eq. (1),µ0 is the permeability of free space,c is the speed
of light, ω andk are the wave frequency and wavevector, re-
spectively, andk1 is a unit vector alongk. It is assumed in
what follows that the unstriated background plasma is only
weakly inhomogeneous and has a small uniform gradient
with a characteristic scale length that is much larger than the
wavelength of any wave present. Thus, in the absence of
plasma density striations, the only contribution to the current
density is

J (k, ω) = −N0eV (k, ω) (2)

whereN0 is the background electron density,e is the size
of the electronic charge andV (k, ω) represents the electron
velocity. In the presence of a background magnetic field and
collisions between electrons and neutrals,V (k, ω) is given
by

V (k, ω) = −
i

(1 + iZ)2 − Y 2

(
(1 + iZ)Y

B0
E(k, ω)

−
Y 3

(1 + iZ)B0
b1b1 · E(k, ω) +

iY 2

B0
b1 ∧ E(k, ω)

)
(3)

whereY = �/ω, Z = νen/ω and,B0 is the flux density of
the background geomagnetic field, andb1 is a unit vector in
the geomagnetic field direction. It is important to notice that
in the cold plasma approximation,V (k, ω) is always inde-
pendent of the plasma density. It is just proportional to the
electric field strength and contains no nonlinear components
(unless the electron particle velocities approach the speed of
light, which they do not in the present low power test wave
case).

Substituting Eq. (3) into (2) and then (2) into (1) yields

(5 + 6) E(k, ω) = 0 (4)

where5 and6 are matrices of the form

5 =

 n2 cos2 θ − 1 0 −n2 cosθ sinθ

0 n2
− 1 0

−n2 cosθ sinθ 0 n2 sin2 θ − 1

 (5)

6 =
X

(1 + iZ)2 − Y 2

1 + iZ −iY 0
iY 1 + iZ 0

0 0 (1+iZ)2
−Y 2

1+iZ

 (6)

and whereX = (ωe/ω)2 andωe is the electron plasma fre-
quency. In what follows, the coordinate system will always
be chosen so that thez-axis is alongb1. In Eq. (5),θ is the
angle betweenk andb1. Thus far, the direction ofk and con-
sequently the value ofθ is arbitrary. Furthermore, the direc-
tion ofk will, in general, vary as the wave propagates through
the inohogeneous plasma. However, the geometry for a typi-
cal ionospheric modification experiment under consideration
below involves only vertical propagation of electromagnetic
test waves in a horizontally stratified plasma. This case is
adequately handled by choosingk for the electromagnetic
modes (but not the electrostatic ones, see below) to be paral-
lel to the weak background density gradient. This means that
the direction ofk and the value ofθ may be taken as constant
over the inhomogeneous plasma layers. This greatly simpli-
fies the propagation calculations in Sect. 4 below, wherek is
chosen to lie in thex −z plane for all electromagnetic modes
considered.

The matrix Eq. (4) then has the explicit form n2 cos2 θ − S −iD −n2 cosθ sinθ

iD n2
− S 0

−n2 cosθ sinθ 0 n2 sin2 θ − P

 ·

Ex

Ey

Ez

 = 0

(7)
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where

S = 1 −
X(1 + iZ)

(1 − iZ)2 − Y 2

D =
XY

(1 + iZ)2 − Y 2

P = 1 −
X

1 + iZ

The column vector which follows the 3× 3 matrix in Eq. (7)
represents the cartesian components of the electric field of
the wave. To obtain the dispersion relation for the waves, the
determinant of the 3×3 matrix in Eq. (7) is set to equal zero,
which yields the well-known expression

n =

√
B ±

√
B2 − 4AC

2A
(8)

where

A = S sin2 θ + P cos2 θ

B =
(
S2

− D2) sin2 θ + PS
(

cos2 θ + 1
)

(9)

C = P
(
S2

− D2)
The electromagnetic modes of interest correspond to so-

lutions of Eq. (8) in which the condition 0≤ |n| ≤ 1 is
satisfied. The positive sign option in Eq. (8) is associated
with the O-mode and the negative option with the X-mode.

The properties of electrostatic waves in cold plasma can
also be obtained from the above expressions. In warm plas-
mas, the characteristic propagation speed of high frequency
electrostatic waves is the electron thermal speed. In the cold
plasma approximation, this characteristic speed necessarily
tends towards zero. Thus, in this approximation, electrostatic
waves correspond to the resonance limit,n → ∞. From
Eq. (1), this implies that

k ∧ k ∧ E(k, ω) = 0 (10)

and hence, thatE(k, ω) lies in the direction ofk. Thus,

E(k, ω) = E(k, ω)k1 (11)

wherek1 is a unit vector alongk. Furthermore, the scalar
product ofk1 with Eq. (1) yields the field equation for the
electrostatic oscillations, which takes the form

−E(k, ω) −
iµ0c

2

ω
k1 · J (k, ω) = 0 (12)

In matrix form, Eq. (12) is

k1 (−I + 6) k1E(k, ω) = 0 (13)

whereI is the unit matrix.
A further necessary condition in the resonance limit isA =

0, which from Eq. (9) yields

X =
(
1 + iZ

) (
1 + iZ

)2
− Y 2(

1 + iZ
)2

− Y 2 cos2 θ
(14)

In what follows, the main interest will be in electrostatic
waves that have wavevectors orthogonal to the background
magnetic field and hence,θ = π/2. This requiresS = 0 and
then

X =

(
1 + iZ

)2
− Y 2(

1 + iZ
) (15)

The expression in Eq. (15) corresponds to the upper-hybrid
resonance in the collisional case.

3 Effects of field-aligned plasma striations

3.1 The coupled equations

In the following, it is assumed that an electromagnetic wave
with an electric fieldE(m, ω) and wavevectorm propagates
vertically at an angleθ to the background magnetic field.
Since the wavevector of all electromagnetic modes has been
assumed to lie in thex − z plane, this implies that thex-
axis lies in the vertical plane, orthogonal to the geomag-
netic field. The electromagnetic wave gives rise to an elec-
tron velocity,V (m, ω), in the plasma. It is assumed that
there is a preexisting set of plane standing monochromatic
plasma density striations with electron densities of the form
N(s, 0) + N(−s, 0), in addition to the background density.
±s are the wavevectors of the striations and are assumed to
be orthogonal to the background magnetic field. The zeros
in the second element of the argument in the striation den-
sity indicates that they have zero frequency in the frame of
the background plasma. The presence of the striations leads
to new oscillating current densities in addition to those rep-
resented by Eq. (2) above. These currents constitute two
sidebands in thek-space which, in a weakly inhomogeneous
background plasma density, take the form

J (m ± s, ω) = −N(±s, 0)eV (m, ω) (16)

Now these currents can be inserted as additional terms
in the field equations of the type expressed in Eq. (13), for
a pair of high frequency electrostatic waves with electric
fieldsE(m ± s, ω). It will be assumed in what follows that
|m| � |s|, so that these electrostatic waves will also have
wave vectors parallel tos and orthogonal to the background
magnetic field. It will be shown below that the electrostatic
fields are large in the vicinity of the upper-hybrid resonance
and will, in turn, give rise to a pair of electron velocities
V (m ± s, ω), which will, in turn, give rise to further higher
order current density sidebands (in thek-space) of the form
J (m ± 2s, ω) and alsoJ (m, ω). These will provide addi-
tional contributions to the currents associated with the orig-
inal electromagnetic wave, as well as to two further electro-
static waves. The generation of electric field sidebands with
wavevectors which are multiples ofs and all with frequency
ω can continue in this way ad infinitum. This leads to a set
of coupled equations for the electromagnetic and the electro-
static wave fields. Definingδ(±s, 0) asN(±s, 0)/N0 ands1
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as a unit vector alongs (i.e. orthogonal to the geomagnetic
field), these field equations take the form(
5 + 6

)
E(m, ω) + 6s1

(
δ(s, 0)E(m − s, ω)

+ δ(−s, 0)E(m + s, ω)
)

= 0 (17)

s1
(
− I + 6

)
s1E(m + s, ω)

+ s16
(
s1δ(−s, 0)E(m + 2s, ω)

+ δ(s, 0)E(m, ω)
)

= 0 (18)

s1
(
− I + 6

)
s1E(m − s, ω)

+ s16
(
s1δ(s, 0)E(m − 2s, ω)

+ δ(−s, 0)E(m, ω)
)

= 0 (19)

and for integerp satisfying|p| > 1

s1
(
− I + 6

)
s1E(m + ps, ω)

+ s16s1

(
δ(−s, 0)E

(
m + (p + 1)s, ω

))
+ δ(s, 0)E

(
m + (p − 1)s, ω

)
= 0 (20)

Eq. (17) above is derived from Eqs. (3) and (4) and is es-
sentially the modified field equation for the electromagnetic
wave. Equations (18) and (19) are derived from Eqs. (3)
and (13) for electrostatic waves with sideband currents in-
volving those caused directly by the electromagnetic wave.
Equation (20) is derived from Eqs. (3) and (13) and really
stands for an infinite set of equations which apply to all
the higher order purely electrostatic interactions with inte-
gerp satisfying|p| > 1. The solution to the set of coupled
Eqs. (17) to (20) is found below.

3.2 The coupling function

Although it might at first sight be thought that the solution of
the infinite set of coupled equations above presents formida-
ble problems, the special symmetric form of the infinite set
of equations represented by Eq. (20), with|p| > 1, lends
itself to a rather simple analysis. A little care needs to be
exercised by treating the sidebands with positive and negative
p slightly differently. Although for positivep, p + 1 is of a
higher order thanp, for the negative values ofp, p − 1 is of
a higher order thanp.

First, Eq. (20) is divided throughout byE(m + ps, ω).
Then, after evaluating the matrices, the following expression
is obtained for positivep,

1 − x−srp+1 − x+sr
−1
p = 0 (21)

where

rp =
E
(
m + (p + 1)s, ω

)
E(m + ps, ω)

(22)

x±s =
δ(±s, 0)W

1 − W
(23)

W =
X(1 + iZ)

(1 + iZ)2 − Y 2
(24)

In evaluating the matrices, it is assumed that

s1 = (cosα, sinα, 0) (25)

whereα is the azimuthal angle ofs in the plane orthogonal to
the background magnetic field (i.e. in thex−y plane). Equa-
tion (21) can then be solved iteratively to yield a continued
fraction of the form

rp =
x+s

1 −
x−sx+s

1 −
x−sx+s

1 − · · ·

(26)

It should be noted that the continued fraction in Eq. (26)
has a self-similarity and simply yields

rp =
x+s

1 − x−srp
(27)

Comparing this with Eq. (21) indicates thatrp and rp+1
are identical. Thus,rp is independent ofp and the subscript
may be dropped. Equation (27) is then a quadratic inr and
yields the usual pair of complementary solutions. The neg-
ative square root is chosen here as this ensures that the cou-
pling function,r, tends towards zero, away from the upper-
hybrid resonance region, as would be expected on physical
grounds. Thus,

r =

1 − W −

√
(1 − W)2 − W2δ2

0

2Wδ(−s), 0
(28)

where

δ2
0 = 4δ(s, 0)δ(−s, 0) (29)

Considering definition (29), it is also convenient to choose
δ(−s, 0) to be the complex conjugate ofδ(s, 0). Then,δ0 is
the total amplitude of the fractional electron density perturba-
tion in the striations. This also means thatδ(s, 0) + δ(−s, 0)

is real and is just equal toδ0. A similar procedure is used
for the negative values ofp, when p < −1. Writing
q = E(m+ (p − 1)s, ω)/E(m+ps, ω), subject to the latter
inequality, thenq satisfies

q =
x−s

1 − x+sq
(30)

Thus, q−1 satisfies the same quadratic asr and conse-
quently,q is either identical tor−1 or q−1 andr form a pair
of complementary solutions to the quadratic. The latter op-
tion is chosen here, for reasons indicated below. Ifq−1 is
complementary tor, thenq is given by

1

q
=

1 − W +

√
(1 − W)2 − W2δ2

0

2Wδ(−s, 0)
(31)

After some manipulation, this leads to

q =

1 − W −

√
(1 − W)2 − W2δ2

0

2Wδ(s, 0)
(32)
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The negative square root now appears in Eq. (32) forq,
which is virtually identical to Eq. (28) forr. The reason for
the choice of a positive square root in Eq. (31) is now clear.
As with r, it ensures thatq also goes to zero, away from
the upper-hybrid resonance. Furthermore, only the products
rδ(−s, 0) andqδ(s, 0) appear in the coupled field equations.
Then, Eqs. (28) and (32) imply that negative and positive
order contribute equally to the coupling. Writing

F = rδ(−s, 0) =

1 − W −

√
(1 − W)2 − W2δ2

0

2W
(33)

and insertingF into Eqs. (17), (18) and (19) yields the mod-
ified dispersion relation for the electromagnetic waves in the
presence of the striations.

3.3 The modified electromagnetic dispersion function

InsertingF into Eqs. (18) and (19) yields expressions for
E(m+s, ω) andE(m−s, ω) in terms ofE(m, ω). Inserting
these results into Eq. (17) then yields the purely electromag-
netic field equation of the form

(5 + 6 + 1) E(m, ω) = 0 (34)

where

1 = −
δ2

0

2

(6s1) (s16)

s1 (−I + 6) s1 + F s16s1

In explicit matrix form, Eq. (34) is then n2
m cos2 θ − S1 −iD1 −n2

m cosθ sinθ

−iD2 n2
m − S2 0

−n2
m cosθ sinθ 0 n2

m sin2 θ − P




Emx

Emy

Emz

 = 0

(35)

where

n2
m =

c2

ω
m2

and a unit vector,m1, in the direction ofm is

m1 = (sinθ, 0, cosθ)

Also,

S1 = S − 11x S2 = S − 12y

D1 = D + i11y D2 = D − i12x

11x = G
[
(1 + iZ)2 cos2 α + Y 2 sin2 α

]
11y = G

([
(1 + iZ)2

− Y 2
]

sinα cosα − i (1 + iZ) Y
)

12x = G
([

(1 + iZ)2
− Y 2

]
sinα cosα + i (1 + iZ) Y

)
12y = G

[
(1 + iZ)2 sin2 α + Y 2 cos2 α

]
G = −

δ2
00V

2
[
(1 + iZ)2

− Y 2
]2

δ00 = Xδ0

V =
1

W(1 + F) − 1

It should be noted thatδ00 is defined so that|N(s, 0)| does
not itself vary with altitude, even thoughN0 is assumed to be
weakly inhomogeneous. This is a somewhat arbitrary defini-
tion and reduces simply to a matter of choosing which height
to fix a value ofN0. Here, the expression forδ00 is con-
sistent with choosing the reflection height at whichX = 1.
This follows previous calculations in Jones et al. (1984) and
Robinson (1989). The modified refractive index is then ob-
tained explicitly by setting the determinant of the 3×3 matrix
in Eq. (35) to zero, which yields

nm =

√√√√B1 ∓

√(
B2

1 − 4A1C1
)

2A1
(36)

where

A1 = S1 sin2 θ + P cos2 θ

B1 =
(
S1S2 − D1D2

)
sin2 θ + P

(
S2 cos2 θ + S1

)
C1 = P

(
S1S2 − D1D2

)
Before looking in more detail at the form of the refractive

index in Eq. (36), it is worthwhile examining the form of the
upper-hybrid resonance in this new formulation.

3.4 The upper-hybrid resonance region

The form of the upper-hybrid resonance in the present for-
mulation, which takes into account higher order scatter, is
significantly different from that obtained by previous authors
who only included first order scatter (see Hagfors, 1984 and
Mjølhus, 1985). The coupling function,r, in Eq. (28) gov-
erns the ratio of the size of any given wave amplitude to
that of the next highest order sideband. Its structure across
the upper-hybrid resonance is calculated below for the case
when a linear background density as a function of altitude
is assumed. The calculations below are greatly simplified if
the propagation direction is taken along the density gradient,
which is assumed to be vertical. Defining a scaled coordinate
length,h, in units ofH , in the direction ofm1, then

X = 1 + h (37)

Thus, actual distances in the vertical direction is justhH .
Clearly, Eq. (37) impliesX = 1 at the origin, which thus
coincides with the reflection point of the ordinary electro-
magnetic mode. Inserting Eq. (37) into Eq. (28) then yields,
for r as function ofζ = (h + Y 2)/δ00

r =
−ζ + iZ

(
1 + Y 2

)
δ00

−

√
−ζ + iZ

(
1 + Y 2

)
δ00

− 1 (38)

The real and imaginary parts ofr as a function ofζ in the
vicinity of the upper-hybrid layer (ath = Y 2 and ζ = 0,
are displayed in Fig. 1. Typical values ofZ = 10−5 and
Y = 0.3, which are applicable to F-region conditions and a
high frequency radio wave have been used. In addition, since
the experimentally determined amplitudes of the striations
are quoted in terms of their root-mean-square (rms) values,
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Fig. 1Fig. 1. The real(a) and imaginary(b) parts of the multiple scatter
coupling function,r, as a function of coordinate,ζ .

δrms = δ00/
√

2 has been used to define this parameter in
the calculations which follow. Here, a fairly typical value of
δrms = 0.015 has been employed (Robinson, 1989). Thus,
the conditionZ/δ00 � 1 is strongly satisfied.

The two most striking characteristics of the functionr in
Fig. 1 are first, that its imaginary part is only significantly
different from zero for values ofh between−Y 2

± δ0 (i.e.
between−1 ≤ ζ ≤ 1). This is a result of the expression
within the square root in Eq. (38) being essentially negative
in this interval, even in the absence of collisions. Thus, the
resonance width is 2δ00H . The real part ofr is linear in this
interval. Second, the sizes of both real and imaginary parts
of r peak at a value very close to unity. Indeed, this value is
exactly unity in the limit of no collisions, whenZ → 0, as
is clear from Eq. (38). The value of|r|2 is almost constant
and close to unity throughout the intervalh = −Y 2

± δ00, as
indicated in Fig. 2, which also contains the phase ofr, φr . In
addition, the value ofφr changes byπ across the resonance
interval. It is interesting to note that the results in Figs. 1
and 2 show that the scattered waves are all equal in amplitude
and essentially (see Sect. 5 below) also equal to the ampli-
tude of the test wave, within the resonance interval between
−Y 2

± δ00. The fact that the width of the upper-hybrid res-
onance is much broader than that predicted by single scatter
theory can be seen by comparing the curves in Fig. 1 to those
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Fig. 2Fig. 2. The amplitude squared(a) and phase(b) of the multiple
scatter coupling function,r, as a function of coordinate,ζ .

in Fig. 3, in which the values of the real and imaginary parts
of the functions, where

rs =
1

2

δ00W

1 − W
=

1

2

(
−ζ +

iZ
(
1 + Y 2

)
δ00

)−1

(39)

have been plotted. The corresponding amplitude and phase
curves forrs are also plotted in Fig. 4.rs is the ratio of the
amplitude of the electric field of the pair of electrostatic wave
sidebands to that of the electromagnetic test wave in the sin-
gle scatter approximation and is found by setting the last
term on the LHS of Eq. (21) to zero. In the present example,
with Z � δ00, it is clear that the width ofrs is much smaller
than that ofr. Further,|rs | peaks at values much larger than
unity. Moreover, in the limit asZ → 0, the peak of|rs | con-
tinues to grow as its width becomes smaller, in contrast to
r, whose amplitude just converges to unity and whose width
converges to 2δ00. Despite the obvious differences between
the functionsr and rs , it turns out that the areas under the
curves representing their respective imaginary parts are equal
in the limit of smallY . This result can easily be appreciated
by noting that the amplitude of Im(r) is 1, whilst its width
(in terms ofh) is 2δ00. Thus, its area is of the order ofδ00.
Now the width of the Imrs curve is 2Z and its amplitude is
δ00/Z. Thus, its area is also approximatelyδ00. Since it is
these imaginary parts that determine the levels of anomalous
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resonance function,rs , as a function of coordinate,ζ .

absorption of the test wave (see Sect. 4), this explains why
single scatter theory (if changes to the real part of the refrac-
tive index are ignored) gives the same result for anomalous
absorption as the more rigorous multiple scatter theory.

4 Calculation of propagation and absorption effects

Using Eq. (36), the real and imaginary parts of the modified
refractive index of an O-mode electromagnetic test wave in a
cold plasma with field-aligned plasma density striations have
been calculated as functions of scaled altitude,h. In this cal-
culation, the angle between the magnetic field and the test
wave propagation direction,θ , is taken as 12◦, which is con-
sistent with the geomagnetic field geometry at the site of the
high power facility at Tromsø. In addition, the value of the
angleα, between the normal to the plane of the striations and
the plane containing both the magnetic field and the test wave
propagation direction is chosen arbitrarily to be 0◦in this ex-
ample. The resulting curves are displayed in Fig. 5. Values
of Y, Z andδ00 are the same as those for Figs. 1 to 4, above.
Panel (a) in Fig. 5 also contains the real part of the refractive
index in the absence of striations, as a dashed curve. The
fact that this dashed curve is virtually obliterated by the solid
curve which represents the case with striations is testament
to the fact that the striations have a negligible effect on the
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Fig�.4Fig. 4. The amplitude squared(a) and phase(b) of the single scatter
resonance function,rs , as a function of coordinate,ζ .

real part. Thus, the striations do not affect the propagation
(i.e. phase and group speed) of the test wave in the vicinity
of the upper-hybrid resonance, which is nearh = 0.09 in the
present example. With the present striation amplitude, it is
clear that a new cutoff at the upper-hybrid resonance, pre-
dicted by the single scatter theory (Hagfors, 1984), does not
actually occur. The striations do, however, have a significant
effect on the imaginary part of the refractive index, as is clear
from panel (b). Although much less than Re(nm), Im(nm)
acquires a positive value in the vicinity of the upper-hybrid
resonance, which is much greater than that due to collisions.
This indicates strong absorption. The shape of the Im(nm)
curve in the intervalh = −Y 2

± δ00 is similar in form to that
of Im(r) in Fig. 1, panel(b), though of opposite sign.

The dependence of the above results on the orientation
of the striations, as defined by the angelα, in relation (25)
was also investigated. It was found that the results were only
very weakly dependent on this parameter. This is not too sur-
prising since at the upper-hybrid resonance, the electric field
of the electromagnetic test wave is almost exactly circularly
polarised in a plane orthogonal to the background magnetic
field and is thus rather insensitive to azimuth in this plane.

The value of the anomalous absorption,0, for the test
wave propagating vertically and at a small angle to the back-
ground magnetic field, in traversing the upper-hybrid reso-
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         Fig.5Fig. 5. The real(a) and imaginary(b) parts of the refractive index,
nm, of an O-mode test wave, as a function of scaled height coordi-
nate,h, for the rms fractional striation amplitude,δrms = 0.015.

nance, is easily obtained from

0 = 4
Hω

c

∞∫
−∞

Im(nm)dh (40)

The factor of 4 in Eq. (40) allows for the fact that the power
in the wave is proportional to its amplitude squared and that
the wave traverses the upper-hybrid resonance twice, in prop-
agating from the ground and reflecting from the layer where
X = 1. Equation (40) correctly predicts the levels of ab-
sorption since the width of the resonance is much larger than
the wavelength of a typical test wave. In the example un-
der consideration, withH = 40 km, the width of the reso-
nance is 1.6 km and the wavelength of the test wave at the
upper-hybrid resonance, allowing for refraction, is approx-
imately 120 m. Thus, the resonance is many wavelengths
wide. However, the observed scale length of the striations
along the geomagnetic field of a few tens of km (Jones et
al. 1984) means that the amplitude of the striations,δ00, can
still be considered as constant over the resonance interval.
The corresponding value of0 is 10.6 dB, which is consistent
with that observed during ionospheric modification experi-
ments using the high power facility at Tromsø (Robinson,
1989).

In the limit of smallY , Eq. (40) approximates to

0 = πδ2
00

Hω

c

1
√

Y
(41)

which is identical to that obtained by Gurevich (1978) and
Jones et al. (1984), using energy considerations and single
scatter theory. Expression (41) indicates that0 is propor-
tional toδ00 and is independent ofνen.

Finally, in this section, it is worth briefly examining
whether there are circumstances under which the propaga-
tion of a test wave could be affected if the striation amplitude
were large enough. Curves for the case whenδrms = 0.1
are displayed in Fig. 6. The first thing to notice about these
curves is that the width of the resonance region is signifi-
cantly broader than that in Fig. 5, as expected. However,
although the distortion to the Re(nm) curve, which is brought
about by the striations, is more noticeable than in Fig. 5, it is
still not substantial and certainly is far from introducing any
new cutoff. What is significant here is the anomalous absorp-
tion level, which turns out to be 2230 dB. This is of course
unrealistically large. It should be kept in mind that any high
power pump wave which creates striations in an ionospheric
modification experiment also undergoes anomalous absorp-
tion at similar and usually greater levels than lower power
test waves. Since the high power wave has to overcome
its own self-absorption in these circumstances (Robinson,
1989), this exceptionally high level of anomalous absorption
means that the high power wave would extinguish itself be-
fore it penetrated even a tiny fraction of the resonance region.
Thus, values ofδrms of the order of 0.1 are probably not prac-
tically achievable. Thus, it is unlikely that a new cutoff at the
upper-hybrid resonance could ever be produced by the action
of a high power radio wave in the ionosphere, at least with
the present capabilities.

5 Nature of the resonance broadening process

5.1 The case of sinusoidal striations

At first sight, the broadening of the upper-hybrid resonance
seems puzzling. After all, all of the individual resonances
associated with each order of the scattered electrostatic wave
fields appear to occur at precisely the same altitude, i. e.
where condition (15) is satisfied. However, further consid-
erations indicate that there is actually some uncertainty in
the position of the resonance, due to the variation in the
plasma density in the plane perpendicular to the magnetic
field, which is due to the striations. However, it is not imme-
diately obvious how variations in plasma density in the per-
pendicular plane might affect the position of the resonance
along theζ coordinate. Althoughx and ζ are not exactly
orthogonal, in general, they may be taken to be close to or-
thogonal in most cases of interest. To explain this remarkable
broadening effect, it is necessary to evaluate the plasma den-
sity ‘seen’ by the electric field in the resonance region. Since
the results above are essentially independent of the azimuthal
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         Fig.6Fig. 6. Same as in Fig. 5, but withδrms = 0.1.

angle,α, of vectors1, in what follows,s1 will be taken along
thex-axis. Then, with the aid of Eqs. (18) and (28), the first
order electrostatic field can be expressed in terms of the elec-
tromagnetic wave amplitude as

E (m + s, ω) = rE0 (42)

whereE0 is Emx − iYEmy . The total electric field,6E , of
all of the superposed electrostatic waves is then just

6E = E0

∞∑
p=0

rp
(

exp(ipsx) + exp(−ipsx)
)

(43)

wheres is |s|. The sums of the pair of infinite geometric
series in Eq. (43) are easily evaluated, so that the size of the
field |6E | is just

|6E| = |E0|

√
A2

B2
(44)

with

A2 = 1 − (r + r∗) cos(sx) + r∗r cos2(sx)

B2 = 1 + 4r∗r cos2(sx) + (r∗r)2
+ (r∗2

+ r2)

− 2(r + r∗)(1 + r∗r) cos(sx)

wherer∗ is the complex conjugate ofr. It has been assumed,
in writing Eq. (44), that the ratio of each successively higher

order term to its predecessor is less than unity, as will be-
come clear below. The most straightforward way to simplify
Eq. (44) is to write Eq. (38) as

r − 2R + r−1
= 0 (45)

where

R = −ζ +
iZ
(
1 + Y 2

)
δ00

Then, from Eq. (45), it may be shown that

1 +

(
r∗

2
+ r2

)
+
(
rr∗
)2

=
(
r + r∗

)2
+
(
1 − r∗r

)2 (46)

and(
1 − r∗r

)
= −2

ImR

Imr
rr∗ (47)

Then, withZ/δ00 � 1, the following relations are satified to
high accuracy, within the resonance interval

r∗r = 1 (48)

Imr = −

√
1 − ζ 2 (49)

Rer = −ζ (50)

The RHS of Eq. (47) is very small and positive. Although
Eq. (48) is correct to a very good approximation, Eqs. (47)
to (50) together imply thatr∗r is just slightly smaller than
1, allowing the sum to infinity in Eq. (43) to be performed
legitimately. Substituting Eqs. (46) to (50) into Eq. (44), then
yields, after some manipulation,

|6E | = |E0|

 1 + 2ζ cos(sx) + cos2(sx)

(cos(sx) + ζ )2
+

Z2
(
1 + Y 2

)2
δ2

00

(
1 − ζ 2

)


1/2

(51)

Thus, the peak values of|6E | lie along a contour which sat-
isfies

cos(sx) = −ζ (52)

Furthermore, the peak amplitude itself,|6E |max, along this
contour is then

|6E |max = |E0| δ00
1 − ζ 2

Z(1 + Y 2)
(53)

and the half-width, in terms ofsx, is approximately

1(sx) =
Z(1 + Y 2)

δ00

√
1 − ζ 2

(54)

Equations (53) and (54) indicate that the peak in6E dimin-
ishes in amplitude and broadens in width (in thex-direction)
towards the boundaries of the resonance region.

The profound implications of Eq. (52) become clear when
it is noted that the local plasma frequency, when the effect
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of the striations is taken into account, may be represented by
X′, the perturbed value ofX, as

X′
= X

(
1 + δ0 cos(sx)

)
(55)

Inserting Eq. (52) into Eq. (55) yields, after some manipula-
tion

X′
= 1 − Y 2 (56)

Thus, the peak in the total electric field lies precisely along
the local upper-hybrid contour which makes clear how the
upper-hybrid layer is spread. Due to the incident electro-
magnetic wave, which is itself highly uniform in the plane
perpendicular to the geomagnetic field, electrostatic fluctua-
tions in any layer where it encounters the local upper-hybrid
resonance condition start to excite. This occurs throughout
the region where−1 ≤ ζ ≤ 1.

The total electric field, whose amplitude is given by
Eq. (51) is illustrated quasi-schematically in Fig. 7, together
with the upper-hybrid contour. Apart from points close to
where|ζ | = 1, the upper-hybrid contour lies almost paral-
lel to the geomagnetic field and the angle between them is
roughly π/(2sδ00H). This angle is only around 10−3 radi-
ans in the present example.

The reason why the single scatter approach produces a nar-
row resonance interval along the direction of the striations
may be also seen in similar terms. The size of the total elec-
tric field |Es | is then just

|Es | = |E0|
δ00 cos(sx)√

ζ 2δ2
00 + Z2

(
1 + Y 2

)2 (57)

Clearly, in contrast to Eq. (51), the electrostatic wave field
in Eq. (57) is both sinusoidal in nature and also its phase
along the x-axis is not dependent on theζ coordinate. Thus,
the mean plasma density ‘seen’ by the field, in this case, is
alwaysN0, and there is no spreading of the resonance interval
in the ζ direction, due to changes in plasma density in the
striations.

5.2 The case of broad-band striations

With the insight gained from the sinusoidal case above, the
discussion concerning the resonance broadening is readily
extended, albeit in an approximate way to the case of a broad-
band spectrum of plasma density striations. The spectrum of
irregularities may then be taken to be centred on, for exam-
ple, wavenumber,s, and with a non-zero spectral width,σs .
This implies that the autocorrelation function of the density
of the striations is a quasi-gaussian function inx, but, as be-
fore, independent of the direction parallel to the magnetic
field. The width of thek-spectrum of the density irregulari-
ties, although no longer a single Fourier component, is still
much narrower than the final spectrum of electric field com-
ponents, as in the case of sinusoidal irregularities. This may
be understood in the following way. With the same test wave
as before, the spectrum of the first order scattered electric

field will occupy the same spectral band as that of the irreg-
ularities. The second order scatter, centred on 2s, will be
broader, with a width of approximately(

√
2)σs . Subsequent

scattering will broaden the widths of successive orders of the
scattered electric field, so that the nth order scatter, centred
onns, has a width

√
n times that of the first order. The effect

will be to smear the spectrum of the higher order scattered
wave field into a continuous flat distribution in wavenum-
ber. The result of this smearing is illustrated schematically
in Fig. 8. The first order scattered electrostatic field, which
corresponds to low wavenumbers in the band occupied by the
striations, is indicted by the subscript ‘L’ and the higher or-
ders of the scattered electrostatic field, which has wavenum-
bers beyond the striation waveband, are indicated by the sub-
script ‘H ’. The broad-band coupling may then be approxi-
mated by an equation coupling each first order electrostatic
sideband to the electromagnetic wave and a band of higher
order scatter, together with a second equation which han-
dles the coupling between the higher order modes. These
coupling equations are, respectively, with the aid of Eqs. (6)
and (24)(

1 −
1

W

)
EL(k, ω) + δ(k, 0)E0

+

∞∫
0

δ(−l, 0)EH (k + l, ω)dl = 0 (58)

(
1 −

1

W

)
EH (k, ω)

+

∞∫
−∞

δ(−l, 0)EH (k + l, ω)dl = 0 (59)

wherek andl represent variable wavenumbers. It should be
noted that both irregularity sidebands are combined in one
integral in Eq. (59), but have to be separated in Eq. (58). Fur-
thermore, the broad-band case requiresr to become a func-
tion r(k) of the wavenumber of the striation spectrum andF

in the first line of Eq. (33) to be replaced by an integral over
the striation spectrum. Hence,

F =

∞∫
0

r(k)δ(−k, 0)dk (60)

whereδ(k, 0) now represents a spectral density. The broad-
band replacement for Eq. (20) implies thatEH (k+ l, ω) may
be replaced byr(l)EL(k, ω) in Eq. (58), which then yields,
with the aid of Eq. (60)

EL(k, ω) = −
δ(k, 0)E0

1 −
1

W
+ F

(61)

Multiplying Eq. (61) byδ(−k, 0) and integrating overk then
yields, with the aid of Eqs. (42) and (60), a quadratic equa-
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Fig. 7. (a)Depicts the contours of the plasma density perturbations
in the vicinity of the UHR in thex − ζ plane (lighter shading indi-
cates higher values).(b) Illustrates the corresponding contour plot
of the total electric field, together with the UHR contour (dashed).

tion for F of the form

F =
1

1 −
1

W
+ F

∞∫
0

δ(−k, 0)δ(k, 0)dk. (62)

Thus, F satisfies the same expression as in the sinusoidal
case (Eq. 33) as long asδ2

0 is replaced by the integrated spec-

k��

E0

EL�k,Ω�EL��k,Ω�

EH�k,Ω� ���� EH��k,Ω�

Fig.8
Fig. 8. A schematic representation of the scattered electric field
spectrum in the broad-band case. The continuous curve represents
the electric field and the dashed curve represents the striation spec-
trum. Subscript ‘L’ indicates broad-band first order wavenumbers
and ‘H ’ indicates all higher orders.

tral power

〈|δ|2〉 =

∞∫
0

(
δ(k, 0) + δ(−k, 0)

)2dk

= 4

∞∫
0

δ(k, 0)δ(−k, 0)dk.

Thus, the width of the resonance in the broad-band case is
effectively determined by the rms fractional plasma density
deviation level, as could be reasonably expected.

Finally, the location of the peak in the total electric field
may be estimated for the broad-band case, as follows. The
coupling of Eq. (59) for the higher order scatter is inverse
Fourier transformed to yield(

1 −
1

W
+ δN (x)

)
EH (x) = 0 (63)

whereδN (x) and EH (x) are the fractional perturbation in
electron density and the total higher electric field in spatial
coordinates, respectively. This implies that the high order
scattered field, which contains the overwhelming proportion
of the power of the total scattered electric field, is only non-
zero where the first factor in Eq. (63) is exactly zero. This is
again, as with the sinusoidal case, precisely along the local
upper-hybrid contour (Eq. 56).

6 Thermal effects

Warm plasma effects can modify the above results in a num-
ber of ways. First, radio wave heating of the plasma by a
high power electromagnetic pump wave which sets up the
striations can increase the electron temperature and enhance
some of the transport coefficients. In particular, the electron-
neutral collision frequency can be increased considerably by
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heating in the upper-hybrid layer (Gurevich, 1978). How-
ever, even if the electron temperature were to increase ten-
fold in this region, this would only increase the resonance
width to around 10 m, which is still much smaller than the
wavelength of the test wave. Second, in a warm plasma, high
frequency electrostatic waves propagate at the electron ther-
mal speed and the wave dispersion effects arise. This has the
effect of shifting the resonance slightly away from the upper-
hybrid frequency. Then Eq. (15) becomes, approximately,
for an electrostatic wave of wavevector,k

X =
1 + iZ − Y 2

1 + k2λ2
D

(64)

whereλD is the Debye length. NowλD is of the order of a
few millimetres in the ionospheric F-region. Consequently,
with 2π/|k| of the order of 1 m or greater for a typical spec-
trum of striations encountered in ionospheric modification
experiments (Minkoff, 1974), the spread from the upper-
hybrid resonance altitude caused by the warm plasma effect
will only be of the order of a few metres in the single scatter
case.

The multiple scatter case, in a warm plasma, has previ-
ously been investigated by Inhester et al. (1981) in the con-
text of the striation generation process. Inhester et al. (1981)
showed that in the warm plasma case, with sinusoidal stria-
tions, Eq. (27) forr needs to be replaced byrt , where

r
(p)
t =

xps

1 −
xpsx(p+1)s

1 −
x(p+1)sx(p+2)s

1 −
x(p+2)sx(p+3)s

1 − · · ·

(65)

and

x(p+j)s =
δ00

1 − X
(
1 + λ2

D

(
(p + j)s

)2
− Y 2 − iZ

) (66)

Now unlike Eq. (26), Eq. (65) does not have a self-similarity
property. Furthermore,rt now depends onp and it cannot be
easily evaluated analytically. The real and imaginary parts
of rt in Eq. (65), for thep = 1 case, are plotted as solid
curves in panels (a) and (b), respectively, in Fig. 9. These
plots are somewhat schematic in order to illustrate the effect,
rather than as an accurate representation. An arbitrary value
of (sλD)2/δ00 = 0.003 has been used in obtaining these
curves. Also, following Inhester et al. (1981), a smallp-
dependent, imaginary term has been introduced into Eq. (66)
to account for Landau damping. The dashed curves in each
panel in Fig. 9 represent the real and imaginary parts ofrt ,
respectively. Although, as is clear from Fig. 9,rt is much
more structured thanr, it is remarkably confined to the same
resonance interval,|ζ | < 1, asr. This result is independent
of the value ofsλD chosen, apart from the number of peaks
in the resonance interval, which appears to be approximately
equal to

√
δ00/(sλD). It is clear that it is the multiple scatter

effects that control the broadening of the resonance and not
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Fig. 9Fig. 9. Solid curves: The real(a) and imaginary(b) parts of the
multiple scatter coupling functionrt , with thermal effects included,
for the case wherep = 1 and(sλD)2/δ00 = 0.003. The dashed
curves are the corresponding cold plasma functions, as in Fig. 1.

the shift due to warm plasma dispersion effects. Moreover,
the areas under the two curves in panel (b) of Fig. 9, which
represent imaginary parts, were evaluated by numerical inte-
gration and were found to be identical, within the limits of
accuracy of the calculation. This is an important result as it
is the areas under these curves which determines the levels
of anomalous absorption caused by the FASTUHR process
in each case. This result shows that warm plasma effects
play no major role in determining anomalous absorption un-
der these conditions.

7 Conclusions

A theory in which the effects of multiple scatter on the prop-
agation and absorption of electromagnetic test waves in a
cold magnetoplasma containing field-aligned plasma density
striations has been developed above. The theory has been
used to calculate the complex refractive index of a test wave
in conditions that are applicable to ionospheric modification
experiments in which artificial striations, generated by the
action of a high power electromagnetic pump, cause anoma-
lous absorption of the test wave. The main findings of the
new theory are as follows:

(1) The refractive index of an ordinary mode wave is modi-
fied in the vicinity of the upper-hybrid resonance as a re-
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sult of the presence of striations of sufficient amplitude,
but the width of the resonance region, in the multiple
scatter case, is much larger than obtained in previous,
single scatter, calculations. This width is found to be
typically several tens of times the wavelength of the test
wave, under normal F-region conditions, rather than a
small fraction of a wavelength, as previously predicted.
Moreover, the multiple scatter resonance function re-
mains finite in the limit of zero collision frequency,
unlike the single scatter case. The reason for this be-
haviour is the localisation of the scattered electrostatic
field at the upper-hybrid resonance layer which follows
precisely the undulations imposed by the plasma density
striations.

(2) With fractional striation amplitudes of a few percent, the
imaginary part of the refractive index in the resonance
layer is much larger than that due to electron-neutral
collisions and this leads to strong anomalous absorption
of the test wave. However, the real part of the refractive
index is almost unaffected and, contrary to previous the-
oretical predictions, no new cutoffs appear at the upper-
hybrid layer. Thus, there are no new test wave reflection
effects associated with ionospheric modification exper-
iments.

(3) Multiple scatter effects also appear to be the dominant
mechanism for the upper-hybrid resonance broadening,
even when warm plasma effects are included. Further-
more, the results presented above also appear to be rath-
er independent of the detailed spectrum of the striations,
as long as they are strongly aligned with the background
magnetic field.

The calculations above are also entirely consistent with test
wave anomalous absorption observations made during nu-
merous ionospheric modification experiments, at least for
cases where the test wave frequency is not close to a har-
monic of the electron gyro-frequency. Kinetic theory is need-
ed to explain these latter, rather special conditions. Multiple
scatter theory, thus, seems to clear up a number of rather in-
consistent aspects of the previous, single scatter, theories of
anomalous absorption and propagation of test waves.

Finally, the theory above may also have some important
consequences for the action of the high power electromag-
netic pump itself. Although a detailed investigation of this
topic is beyond the scope of the present study, it is worth
speculating briefly on how the new results might impact on
this important issue. For example, the broadening of the res-
onance, which is such an important aspect of the new theory,
may increase the sensitivity of the pump to self-absorption
processes which may limit the growth of the instability by
which the pump creates the striations. Furthermore, the way
in which the multiple scatter leads to a total electric field of
the superposed scattered waves that is made up essentially of
broad-band noise, could have a profound effect on the nature
of the heating processes itself. In the previous single scatter
approach, it was assumed that the coherent electromagnetic
pump wave had its energy converted into a quasi-coherent,

though large amplitude, electrostatic wave in the vicinity of
the upper-hybrid resonance and that the large electric field
of this slowly propagating wave heated the plasma through
electron-neutral collisions (e.g. Robinson, 1989). However,
as is now clear, the electric field of the scattered wave field
is itself effectively randomised by the randomly meandering
contours of the plasma density in the ionosphere. This means
that the electron motion driven by this electric field will al-
ready be random to some degree and does not have to rely en-
tirely on the randomising effects of collisions with neutrals.
Thus, the temperature of the electron gas is affected directly
by the random component in the wave field and truly colli-
sionless heating can arise for a sufficiently powerful pump
wave.
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Hedberg,Å., Derblom, H., Thid́e, B., Kopka, H., and Stubbe, P.:
Observations of HF backscatter associated with heating experi-
ments at Tromsø, Radio Sci., 18, 840–850, 1983.

Inhester, B., Das, A. C., and Fejer, J. A.: Generation of small-scale
field-aligned irregularities in ionospheric heating experiments, J.
Geophys. Res., 86, 9101–9106, 1981.

Jones, T. B., Robinson, T., Stubbe, P., and Kopka, H.: Frequency
dependence of anomalous absorption caused by high power radio
waves, J. Atmos. Terr. Phys., 46, 147–153, 1984.

Minkoff, J.: Radio frequency scattering from a heated ionospheric
volume, 3, Cross section calculations, Radio Sci., 9, 997–1004,
1974.

Minkoff, J., Kugelman, P., and Weissman, I.: Radio frequency scat-
tering from a heated ionospheric volume, 1, VHF/UHF field-
aligned and plasma-line backscatter measurements, Radio Sci.,
9, 941–955, 1974.

Mjølhus, E.: Anomalous absorption and reflection in ionospheric
radio modification experiments, J. Geophys. Res., 90, 4269–
4279, 1985.

Robinson, T. R.: The heating of the high latitude ionosphere by high
power radio waves, Phys. Rep., 179, 79–209, 1989.

Robinson, T. R., Stocker, A. J., Bond, G., Eglitis, P., Wright, D., and
Jones, T. B.: O and X mode heating effects observed simultane-



T. R. Robinson: Effects of multiple scatter on the propagation and absorption of electromagnetic waves 55

ously with the CUTLASS and EISCAT radars and low power HF
diagnostics at Tromsø, Ann. Geophysicae, 15, 134–136, 1997.

Stix, T. H.: Waves in plasmas, Am. Inst. Phys., New York, 1992.
Stubbe, P., Kopka, H., Jones, T. B., and Robinson, T.: Wide band

attenuation of radio waves caused by powerful HF waves: Sat-
uaration and dependence on ionospheric variability, J. Geophys.
Res., 87, 1551–1555, 1982.

Vaskov, V. V.: Dielectric constant perturbations caused by the con-
version of an electromagnetic wave at small-scale plasma inho-
mogeneities, Sov. J. Plasma Phys. (Eng. Trans.), 14, 686–690,
1988.

Vaskov. V. V., and Gurevich, A. V.: Nonlinear resonant instability
of a plasma in the field of an ordinary wave, Sov. Phys. JETP
(Eng. Trans.), 42, 91–97, 1976.


