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Abstract. A detailed nonlinear time series analysis of the out into the interplanetary medium contributes greatly to the
hourly data of the geomagnetic horizontal intengitymea-  perturbation in the geomagnetic field. Episodes of extra or-
sured at Kodaikanal (12° N; 77.5° E; mag: dip 35°N) has  dinary fluctuations in Earth’s magnetic field were detected as
been carried out to investigate the dynamical behaviour ofstorms in the mid 1800’s. The analysis of the fluctuations
the fluctuations off. The recurrence plots, spatiotemporal in the geomagnetic field has many practical applications in
entropy and the result of the surrogate data test show the denagnetic navigation, orientation control, geophysical explo-
terministic nature of the fluctuations, rejecting the hypothesisration, etc. (Newitt, 1993; Kerridge, 1993; Gonzalez et al.,
that H belong to the family of linear stochastic signals. The 1994; Sutcliffe, 2000). The analysis of storm morphology
low dimensional character of the dynamics is evident fromhas been undertaken by several authors. Different defini-
the estimated value of the correlation dimension and the fractions of geomagnetic storms have been given by Gonzalez
tion of false neighbours calculated for various embedding di-et al. (1994). According to the classical definition, a geo-
mensions. The exponential decay of the power spectrum anthagnetic storm occurs when the datfy, index exceeds 29,
the positive Lyapunov exponent indicate chaotic behavioura minor storm occurs when 38 A, < 50; a major storm

of the underlying dynamics off. This is also supported by occurs when 50< A, < 100 and a severe storm occurs
the results of the comparison of the chaotic characteristicsvhenA, > 100 (Lundstedt, 1996).

of the time series off with the pseudO-ChaOtiC characteris- A Continuous recording of any of the Components of the
tiCS of CO|0ured noise t|me SerieS. We haVe alSO ShOWﬂ thabeomagnetic fieid typica”y exhibits two types Of Variations:
the error involved in the short-term prediction of successivea smooth, regular variation, known &, and the solar
values of H, using a simple but robust, zero-order nonlin- quiet day variation, which arises as the magnetic signature
ear prediction method, increases exponentially. It has als@f the E-region ionosphere current driven by a dynamo ac-
been suggested that there exists the possibility of charactetion (Campbell, 1989) and a rapid irregular fluctuation, re-
iZing the geomagnetic fluctuations in terms of the inVariantSferred to as a geomagnetic disturbance or Storm, the mag_
in chaos theory, such as Lyapunov exponents and correlatiofjtude of which may be such that the reguly variation
dimension. The results of the analysis could also have impliis swamped and thus, not easily discernible. Although the
cations in the development of a suitable model for the daily g, variations are the most regular of all the geomagnetic
fluctuations of geomagnetic horizontal intensity. field variations, tending to repeat itself with a periodicity

Key words. Geomagnetism and paleomagnetism (time vari-Of 24h, significant day-to-day differences do occur (Hib-
ationS, diurnal to secu]ar) — History of geophysics (So|ar_berd, 1981; SUtCllﬁe, 2000) At low and middle latitude

planetary relationships) Magnetospheric physics (storms angtationst, is known to change drastically during a geomag-
substorms) netic storm. Wright (1962) found that ti#é field at Ibadan

(dip lat. 3 S) for any hour of the day was lower on inter-
national disturbed (ID) days than on international quiet (IQ)
days. Bharghava and Subramanyan (1964) found that at Ko-
daikanal (12° N; 77.5° E; mag: dip 35°N), there is little

The geomagnetic field pervades the region around the Eartﬁ',";m";‘t'on in the daily range off and Z on disturbed days

: : - hen compared to that under quiet conditions. Vestine et

extending to several times of the radius of the Earth. Solar" X )
output, in terms of solar plasma and magnetic field, ejectec?l' (1947) and_ Wright (196.32) also found that the da|_ly range
of H at low-latitudes remains unchanged on magnetically ac-

Correspondence td3. Renuka (dlcampus@vsnl.com) tive days. Bhargava and Yacob (1969) found a systematic
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400 tested the null hypothesis that the observdd index signal

is generated by a linear stochastic signal, possibly perturbed

300 by a static nonlinear distortion. In the first paper (Pavlos et
200 al., 1999a) of the series, they have used four distinct geomet-

ric parameters derived from the slope of the correlation in-

~ 100 | tegral as discriminating statistical procedures in order to test
S the null hypothesis of the nonlinear stochastic surrogate data,
T 0 which have the same power spectrum and amplitude distri-
bution as the original data. In the second paper (Pavlos et
-100 al., 1999b), dynamical characteristics, such as Lyapunov ex-
200 | ] ponents, nonlinear dynamic models and mutual information,
were used to test the null hypothesis. The results of these

-300 t : : : : : : : tests suggest the rejection of the null hypothesis thasithe

0 1000 2000 3000 4000 5000 6000 7000 8000 index signal belongs to the family of stochastic signals un-

400 ‘ ‘ Time (ho}”) ‘ ‘ dergoing a static nonlinear distortion, i.e. the results of these

(b) studies strongly support the hypothesis of nonlinearity and

300 i chaotic behaviour of the underlying dynamics of the magne-
tospheric system. In continuation of these studies, they have
200 r 1 introduced significant theoretical concepts about the magne-

100 | | tospheric system and its dynamical interaction with the so-

i lar wind (Pavlos, 1999c). Based on the comparison of the
@ ol i observational behaviour of the magnetospheric system with
the results of the analysis of the different types of stochastic
-100 r 1 and deterministic input-output systems, they have observed
200 | | that the hypothesis of low-dimensional chaotic behaviour of
the magnetospheric dynamics remains a possible and fruitful

300 . . . . . . concept which must be developed further. Hence, we feel
300 -200 -100 O 100 200 300 400 that the tools of nonlinear time series analysis can be used

sn with confidence in order to obtain useful information about

the internal deterministic component of a magnetospheric

Fig. 1. (a) Time series of the geomagnetic figltl (b) Delay repre-

sentation of the time series &f. time series.

Our main objective in this work is to carry out a detailed
nonlinear time-series analysis of the time series of the mea-
. . _ . . . surements of the geomagnetic horizontal fiéld The data
decrease inf at low-latitudes, with an increasing, in- e sed in this analysis represent the geomagnetic horizon-

dex during extremely quiet periods and suggested the effect jyiensity 77, measured during the year 1991 at a one hour

is associated with the interaction of the solar wind on theinterval at the Kodaikanal observatory and published by the

magnetosphere. One of the objectives of investigation of thg, jian Institute of Geomagnetism, Bombay. The importance
dynamical behaviour of the fluctuations of the geomagnetic

RS ¢ ; of this data is thaH varies drastically during the year and in
field is to predict storms. Wang (1996) has applied fractal yqgition, we noted 33 storms, out of which five were severe.

theory in a quantitative analysis of geomagnetic storms a”dl'he time series off is plotted in Fig. 1a and its delay repre-

has estimated the correlation dimension of the attractor forsentation in Fig. 1b. The origin of the values Bfhas been

storm data from the Beijing observatory (8ON, 1162° E). shifted to 39 000 nT.

Nonlinear dynamic methods have been applied to mag-
netospheric data in order to study the underlying dynamics
(Sharma, 1995; Klimas et al., 1996). Studies using thes€ Nonlinear time series analysis
methods have given results supporting the concept of mag-
netospheric chaos (Vassiliadis et al., 1990, 1992; Robert eln a purely deterministic system, the states of all future times
al., 1991; Shan et al., 1991; Pavlos et al., 1992, 1994, 1999are determined once its present state is fixed. Thus, we can
b, ¢). However, several studies have given evidence againsttudy the dynamics of the system by studying the dynam-
the hypothesis of magnetospheric chaos and indicate the sides of the corresponding state space for the study of systems
nificant role of the stochastic solar wind driver (Prichard andwith deterministic properties. However, at times, the only
Price, 1993; Price et al., 1994; Takalo and Timonen, 1994 jnformation of the system available is a series of univariate
Prichard, 1994). Klimas et al. (1996) have given an excellentmeasurements equidistant in time, i.e. a time series. Un-
review of the studies on these aspects. The criticism aboutler these circumstances, one has to construct a new state
the magnetospheric chaos has been recently addressed irspace in which the mapping from one point of the trajectory
series of papers by Pavlos et al. (1999a, b, ¢). They havéo the successive one is unique. This is accomplished using
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time delay coordinates. Embedding theorems (Sauer et al., o7 -_—
1991) guarantee that for an appropriate delay depending on

the data, at most2+ 1 delay coordinates are enough, when
d is the fractal dimension of the attractor. A time series is 3
a sequence of scalar measurements of some quantity Whicli
depends on the current state of the system, taken at multiple€
of a fixed sampling time: o}

1)

wheren,, is the measurement noise. A delay reconstruction
in m dimensions is then found by the vectors given by

sp = s(y(nAt)) + nn,

fraction of fals

s Sn—us Sp)- (2) 1 2 3 4‘1 5 6 7

Yn = (Sn—m-1)v> Sn—(m-2pv> - - 8 9 10 11 12 13 14 15

The time difference in number of sampkebetween adja- m

cent components of the delay is referred to asaber delay
time. One of the problems of the nonlinear time-series anal-
ysis is to find an optimal embedding dimensipnHowever,
for many practical purposes, the most important embedding

parameter is the produetr of the embedding dimension  techniques give the optimal number of independent variables
and the delay time, sincemz is the time span represented required to reconstruct the underlying attractor of the dynam-
by an embedding vector. A precise knowledgerois only  jca| system from the time series. Most of the significant char-
required when we want to exploit determinism with minimal acteristics of the original phase space are carried over to the
computational effort (Kantz and Schreiber, 1997). Neverthe-econstructed phase space for the sufficient large embedding
less, there are several indicators of an optimal embedding digimension obtained in the above discussed methods. Math-
mensionm. One such indicator is the correlation dimension ematically speaking, the geometrical characteristics of the

Fig. 2. The fraction of the closest false neighbours as a function of
the embedding dimension for the time series.

D, defined by original phase space are topologically equivalent to its mir-
. InC(r) ror dynamical flow in the reconstructed phase space. Conse-
D= |Im0 i (3)  quently, it is possible to make both qualitative and quantita-
r—>

whereC (r) is the correlation sum for radius which reveals
a scaling profile a€' (r) ~ r? for r — 0. The correlation
sum depends on the embedding dimensioof the recon-
structed phase space and the length of the time s¥rigs

> N N
Cr) = m;j;_l@(r —lyi = y;ID,

4)
where® is the Heaviside step functio®(a) = 0ifa <0
and®(a) = 1 fora > 0. The scaling exponent increases
with m and saturates to a final value of for sufficiently
large embedding dimension,. In most casesy, may be
the smallest integer larger thdn (Ding et al., 1993). When

the slopesi of the correlation integral for various embed-

ding dimensions reveal a plateau at low values ahd the
plateau converges for increasing then there is strong ev-

tive statements about the system based on the time series by
using the tools of a nonlinear time-series analysis. Thus, itis
relevant to carry out a detailed, nonlinear time-series analy-
sis of the fluctuations of the geomagnetic horizontal intensity
H. The results of the analysis are discussed in the following
section.

3 Results and discussion

We started the analysis by estimating an optimal value of
the embedding dimension, using the method of the closest
false neighbours. The fraction of the closest false neighbours
as a function of the embedding dimension is plotted in Fig. 2.
It is evident from the figure that the fraction of false neigh-
bours decreases drastically after the first few values.dh
order to establish the low dimensionality of the attractor, we

idence for a low-dimensionality of the underlying dynamics have also calculated the correlation dimension.
of the system. Calculation of the correlation dimension from  Attractors of dissipative chaotic systems generally have

the time series is easy, compared to the calculation of othevery complex geometry and hence, are called the strange at-
dimensions and, in most cases, gives a good approximatiotractors. One of the parameters that characterizes an attractor
to the actual dimension of the attractor. Another techniqueis its dimension, which can be regarded as a measure of the
to estimate an optimal value ef is to look for the closed amount of information necessary to specify the position of a
false neighbors (FNN) in the phase space at a given valugoint on the attractor within a given accuracy. The correla-
of m (Kennel et al., 1992). As the embedding dimensiontion dimension is one such parameter which depends on the
increases, the number of false neighbours decreases. Thuspatial correlation of points on the attractor.

one can detect the minimal embedding dimension which cor- The temporal correlation present in a time series can lead
responds to the minimum number of false neighbours. Theséo a spurious estimation of the correlation dimension of the
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Fig. 3. The space-time separation plot for the time seriegfof  Fig. 4. (a) Local slopes of the logarithm of the correlation sum
Initially, the curves increase quickly and later, the stable diurnalfor the geomagnetic horizontal intensity for m = 12, t = 10

oscillations repeat. andw = 100 The correlation dimensio® = 3.70 £ 0.04. (b)
The correlation sun€(r) of H form = 8,9,...,20, r = 10 and
o =100

attractor (Theiler, 1991). In order to remove this spurious ef-

fect, the temporally correlated points are excluded from theh low di ional chaotic d . Iso be ob d
pair counting in the correlation sum, i.e. the sum in Eq. 4the low dimensional chaotic dynamics can aiso be observe

is restricted to pairs of points whose time indices differ by frorr;1a dpafrtlcular Imezr StOChj‘Stl'c pLOCESS' We em;l)DI?yedéhi
at leastw, called the Theiler window (Theiler, 1991). Heg- method of surrogate data and also the Recurrence Plots (Eck-

ger et al. (1999) have suggested that the value should man et al., 1987) to distinguish between linear stochastic and

be chosen generously. The space-time separation plot intro(jeterministic dynamics.
duced by Provenzale et al. (1992) provides a good means of '€ Mmethod of surrogate data has been reported to be a
determining a sufficient value of (Hegger et al., 1999). In successful tool of choice for the identification of a nonlin-

the presence of temporal correlations, the probability that 2 deterministic structure in an experimental data (Mitschke
given pair of points has a distance smaller thatepends on and DAmmig, 1993). It is specifically devised to contrast a

bothr and also on the timér between the two points. In a dat_a set under s_tudy with data t_hat are similar with respect
space-time separation plot, the number of pairs is plotted ago linear correlations, but otherwise purely random. Accord-

a function of two variables, the time separatian and the ing to this method, the geometrical and dynamical charac-
spatial distance (Hegger et al., 1999). teristics of the data under study is compared with those of

The space-time separation plot of the geomagnetic horiStochastic signals which have the same Fourier amplitudes
zontal field H is given in Fig. 3. The diurnal variability and the same distribution of values. If the behaviour of the
is dominant in this system and is reflected in Fig. 3. Theorig[nal data and the _sqrrogate d.ata are significantly differ-
temporal correlation is evident within the first 12 time steps ent in such characteristics, then it may be safely concluded

where the lines increase consistently. However, the oscilla-that the process under study cannot be described by a sta-

tions saturate after a few cycles. To be safe, we have chotionary, linear Gaussian stochastic model. The significance

sen the minimum correlation time to be 100. However, Weof the diffe_rence of the local slopes of the correlation sums
have varied the value of the Theiler parametefrom 100 can be defined as
to 1000 for the calculation of the correlation dimension, but It — Horig
there was no significant difference. The value of the correla-S = ———
tion dimension calculated is30 + 0.04 which corresponds
to a good plateau, as shown in Fig. 4. This fractional cor-wherey is the mean value of the local slopes of the correla-
relation dimension indicates the existence of a strange, lowtion sums of different surrogates, ands their standard de-
dimensional attractor. viation (Mitschke and Bmmig, 1993; Pavlos et al., 1999a).
We then analyzed the deterministic nature of the time sefor our analysis, a group of 40 surrogates of the time se-
ries. This is important since a finite time series with a broadries H were generated based on the algorithm of Schreiber
band power spectrum may be a realization of a stochasand Schmitz (1996). The plot of the local slopes of the cor-
tic process governed by an autoregressive moving averageslation sums of the surrogates, along with thatrbfas a
model or of a low dimensional deterministic chaotic pro- function of In(r), is given Fig. 5a. Figure 5b gives its mean
cess (Eckman and Ruelle, 1985). It has also been noted thaalue and the standard deviation (S. D.). For the region where
some geometrical and dynamical characteristics (low corresS > 2, we can reject with a confidence above 95% the null
lation dimension and positive Lyapunov exponent, etc.) ofhypothesis that the time seriesKfis a realization of a linear

©®)

o
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Fig. 6. The recurrence plot of the time series#f

Local slopes

are useful to graphically detect hidden patterns and structural
changes in data or to see similarities in patterns across the
time series under study (Eckman et al., 1987). Once the
dynamical system is reconstructed by means of delay co-
30 60 120 ordinates, the distances between all pairs of vecgprand

Ln(® y; are computed and various colour-codes are assigned to
different distances. In a two-dimensional recurrence plot, a
colour-code at positio¥, j) specifies the distances between
the vectorsy; andy ;. For random signals, a uniform distri-
bution of colours over the entire plane is obtained, whereas
for deterministic signals, the recurrence plot contains beau-
tiful structures. The recurrence plot in the grey scale of the
time series in this study is given in Fig. 6, which provides
evidence of the determinism in the data.

In addition to these techniques, we have also computed the
spatiotemporal entropy. This quantity compares the distribu-
tion of distances between all pairs of vectors in the recon-
structed phase space with distances between different orbits
30 60 120 evolving in time. For random signals, the value of the spa-
Ln(r) tiotemporal entropy will be 100%, whereas for deterministic

signals the value lies in between 0 and 100. In our case the

Fig. 5. (@) The local slopes of the correlation sums of the surrogates, 5 ;e computed was close to zero, showing perfect structure

as function of rir) form = 12, r = 10andw = 100 (b) Themean ,yhe gara From the above observations, we can safely con-
values of the local slopes of the surrogates with standard dewanoraude that the qeomaanetic horizontal intengitvdoes not
form = 12, = 10 andw = 100 (c) Plot of the significance of the 9 9 yd

differences versus Irir). belong to the family of linear stochastic signals. Thus, the
fluctuations observed in the time seriesbfare due to a low
dimensional deterministic process.

stochastic process (Pavlos et al., 1999a). As shown in Fig. 5¢, It has been observed that a time series of coloured noise

the significance of the differencereaches above 7 for small can also exhibit a power law power spectrum® which is

values ofr, and remains above 2 for a larger interval of small typical of a chaotic time series. The correlation dimendion

r values. is related tax by D = 2/(« — 1) and hence, a coloured noise
We have also used the recurrence plot of the time seriesime series can also lead to a low correlation dimension (Os-

of H to identify the structure in the data. Recurrence plotsborne and Provenzale, 1989; Theiler, 1991). A time series of

O P N W » U1 O N O ©
e L T
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Fig. 7. The autocorrelation coefficient of the time seriestbfand Fig. 8. (a) Plot of the local slopes of the logarithm of the corre-

that of the coloured noise with the same correlation dimenbiea lation sums of the phase randomized time serieg/ofor m =

3.7. 1,2,...,20, r = 10 andw = 100 (b) The same for the original
times series o form = 12,13, ..., 20, r = 10 andw = 100

coloured noise can be generated by letting
where the phaseg; are distributed randomly on the interval

N/2 ; .
N Ch coS 2 ik/N — forj=1.2....N. (6 [0, 27]. Figure 8a shows the local slopes of the logarithm of
() kzzl wcosenjk/ du)forj ©) the correlation sums of the phase randomized time series of

H and Fig. 8b shows that of the original time serieghflt
where the coefficient€;, related to the power law power is evident from these figures that the low dimensional chaotic
spectrumP (k) oc k=% by profile is destroyed by the phase randomization.

We then compared the stationarity of these two times se-
) ries. The fractional Brownian motions with coloured noise
profiles can have a low dimensional character, but they are
not stationary signals unlike motions on a strange attractor
and the phasefy, are randomly distributed if0, 27]. Pav-  (pavlos et al., 1992). For a stationary process, the probabil-
los et al. (1992) have discussed the methods to compare thg, density in phase space must be invariant with time. The
chaotic characteristics of an experimental time series Withprobability density of the time series @f is calculated by
the_ pseudo-chaotic characteristics of a coloured noise tim%iividing the range of the values &f into short intervals and
Series. counting the values off which fall in those intervals. Fig-
The autocorrelation coefficients o and that of the yre 9a shows the probability density calculated for the origi-
coloured noise time series with same fractal dimension isha| times serie€/. The solid line shows the probability den-
plotted in Fig. 7. For small lag times, the autocorrelation sjty calculated for the entire time series and the filled circles
coefficient ofH drops quickly, whereas that of the coloured corresponds to the first half of the time series. The coinci-
noise decreases very slowly. There is also a significant difgence is very clear in this figure. Figure 9b shows the prob-
ference in the decorrelation time. The autocorrelation coef—abi”ty calculated for the phase randomized time seriefd of
ficient of # drops abruptly by days 14 and 15 and reachesin this figure, the solid line corresponds to the entire time se-
zero by day 40. However, the coloured noise takes about 72ies and the dashed line with filled circles corresponds to the
days to become decorrelated. first half of the series. The coincidence in this figure is very
The randomization of the phases of a deterministic chaotiqow and this reveals the nonstationary character of the phase
signal can destroy its low dimensional chaotic profile. How- randomized signal. These results also show the deterministic
ever, this profile of a coloured noise time series remains in-character of the time series #f.
variant under the phase randqmizat?on (Pavlqs etal, 1992). The power spectrum of the time seriesifshows expo-
We' have compared the ,lOW dlmensmngl profile of the tiMe e ntial decay which excludes the possibility of random be-
series off{ to that of the time series obtained by the random- oy r and thus, indicates the chaotic behaviour of the time
ization of phases of the time seriesféf The phase random-  gqries (Fig. 10). It is also evident from Fig. 10 that there
ized time sgries oH was obtained from the Fourier series are five distinct peaks and they corresponda fo= 300nt,
representation off 300nt, 179 nt, 236 nt, 300 nt, respectively, and hence, repre-
sent severe storms.

One important part of the nonlinear time series analysis is

o 112
Cy = |:P(k)W:|

x(ti) =Y C coSmiti + i), ®)
k
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Fig. 9. (a) The probability density function of the original time
series ofH based on the entire time series (solid line) and on the first
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Fig. 11. The curve o&S5(2" for the embedding dimension = 12.

The slope of the dashed line i28 + 0.006 and it is the maximum
the calculation of Lyapunov characteristic exponents which,Lyapunov exponent of the time series/at
if positive, by definition, are the most striking evidence of
chaos (Kantz, 1994). The first algorithm to a compute Lya-
punov exponent for a time series was introduced by Wolf etof the effective expansion rates are averaged out. For an in-
al. (1985). One of the drawbacks of the algorithm of Wolf termediate range of values afn, S(An) increases linearly
et al. (1985) is the strong dependence of the embedding diwith slopex, which is our estimate of the maximal Lyapunov
mension (Kantz, 1994). In this work, we used the algorithmexponent. In this work, we have repeated the computation
developed by Kantz (1994) to calculate the maximum Lya-of S(An) for different values of the embedding dimension
punov exponent. According to this method, one has to com+n and the diameter of the neighbourhoodrhe maximum
pute Lyapunov exponent was estimated tobe= 0.25+ 0.006

for the time series off (Fig. 11).

S(An) = i Z In Sensitive dependence on initial conditions is an impor-
N = tant feature of a chaotic system. The average exponential
rate at which initial trajectories diverge is described by the
1
Z | S, +-2n — Sntran | 9) Lyapunqv exponent. Thus, the average error'made whgn
[AYn,)| Yncld ) forecasting the future measurements of a chaotic system in-

creases exponentially with time, even though it is governed
for a pointy,, of the time series in the embedding space, by a deterministic law. The length of the period, over which
whereld(y,,) is the neighborhood o§,, with diameterr. accurate, short-term predictions of successive fluctuations of
This is repeated for many valuesmaf so that the fluctuations the signal, is determined by the accuracy of the initial condi-
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200 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0.43 solar disturbance than the single paraméteWe have es-
we e timated both the geometric and dynamical invariants of the
Il B 1042 attractor for the geomagnetic horizontal intensity, such as the
= 160 | e ety correlation dimension and Lyapunov exponents, and we feel
z N\ o404l 5 that it would be more advantageous to include the dynamical
2 140} % - 1 5 invariants, such as Lyapunov exponents, into this combina-
2 h 104 :E; tion to describe the solar disturbance. In general, the quan-
5 120 S £ tities involved in chaos theory could be used to characterize
E 10X Actual values —a— 1039 = the fluctuations of the geomagnetic intensity and hence, to
5 - Predicted values —+— describe the associated phenomena more accurately. The re-
Normalized error e 0.38 . . . .
80 3 sults of the analysis could also have implications in the de-
: velopment of a suitable model for the daily fluctuations of
O 3 4 s 6 7 8 o 17 geomagnetic horizontal intensity.

Time (hr)
AcknowledgementsThe authors are grateful to the referees of this

paper for their constructive comments which helped to improve the

presentation of this paper substantially. One of the authors (K. S.)

thanks T. R. Ramamohan, Regional Research Laboratory (CSIR),

Thiruvananthapuram for stimulating discussions.

Another one of the authors (B. G.) wishes to thank C. V. Deva-

tions and the Lyapunov exponent. The prediction of subsesia, Space Research Laboratory, VSSC, Thiruvananthapuram for his

quent values of the times series Hf, using a simple but helpful suggestions. _ _

robust zero-order nonlinear prediction method (Kantz and ToPical Editor M. Lester thanks N. Watkins and A. Klimas for

Schreiber, 1997), is given in Fig. 12, along with the nor- their help in evaluating this paper.

malized root mean-square errors. It may be noted that the

root mean-square errors increases exponentially. This Comg{eferences

be seen as further evidence of the deterministic nature of the

fluctuations and also of the Underlying chaotic behaviour. Bharga\/a, B. N. and Subramanyan’ R. V.: Geomagnetic distur-
bances associated with equatorial electrojet, J. Atmos. and Terr.

. Phys., 26, 879-888, 1964.
4 Conclusion Bhargava, B. N. and Yacob, A.: Solar cycle response in the hori-

. . L. . ) zontal force of the earth’s magnetic field, J. Geomagn. and Geo
In this work, an investigation of the fluctuations of the time  gjectr., 21 385-397, 1969.

series of the geomagnetic horizontal intengity using the  campbell, W. H.: The regular geomagnetic field variations during

tools of nonlinear time series analysis, has been carried out. quiet solar conditions, in: Geomagnetism, Vol. 3, (Ed) Jacobs, J.

The recurrence plots and the results of surrogate data method, A., Academic Press, London, 1989.

in addition to the estimate of spatiotemporal entropy, showsDing, M., Grebogi, C., Ott, E., Sauber, T., and York, J. A.: Estimat-

the deterministic nature of the data. We have also compared ing correlation from a chaotic time series: when does a plateau

the chaotic characteristics of the time seriestbfwith the onset occur?, Physica D, 60, 404-424, 1993.

pseudo-chaotic characteristics of coloured noise time seriegczgzzi OJrS P'Rz’\‘/dMRé‘;”Sh;‘ E;g‘z_)dl'; tgzgrylggghaos and strange

e o arSEcman 3. Kamghrst .0, and Ml . el

L . . of dynamical systems, Europhys. Lett., 4, 973-977, 1987.

minism in the_z data._ In addition to _the estimated value qf theGonzabZ‘ W. D., Joselyn, J. A., Kamide, Y., Kroehl, H. W., Ros-

correlation dimension, the analysis of the data, according to yoker, G., Tsurutani, B. T., and Vasyliunas, V. M.: What is a

the method of the closest false neighbours, also shows the geomagnetic storm?, J. Geophys. Res., 99, 5771-5792, 1994.

low dimensional character of the underlying dynamics. TheGrassberger, P. and Procaccia, I.: Measuring the strangeness of

positive value of the maximum Lyapunov exponent and the strange attractor, Physica D, 9, 189-208, 1983.

exponential decay of the power spectrum shows the chaotitiegger, R., Kantz, H., and Schreiber, T.: Practical implimentation

behaviour of the dynamics. Thus, the physical process under- of nonlinear time series: the TISEAN package, chaos, 9, 413-

lying the fluctuations of{ is deterministic, low dimensional 435, 1999. o o

and chaotic. We have also shown that the error involved inH'bbe,rdtz F. '1': Et)ag-th)Jl;day ‘éj“g?"'%"flggﬂlq geomagnetic field

he short-term prediction of th ive val in variation, AUSt S, Fhys., o4, ©.=90, S98-. _

ggirsnrﬁet E)?Jt roF:)SgtCtz:roc—)oﬁdgrszgﬁﬁﬁz; p?egsziﬁlsmgthod] oselyn, J. A., Kamide, Y., Kroehl, H. W., Rostoker, G., Tsurutani,
o . . . B. T, and Vasyliunas, V. M.: What is a geomagnetic storm?, J.

_(Kgntz and Schre|b_e_r, 1997), increases expo_n_e_ntlally anql this Geophys. Res., 99, 5771-5792, 1994.

indicates the sensitive dependence on the initial conditionskantz, H. and Schreiber, T.: Nonlinear time series analysis, Cam-

Wang (1996) has proposed that a combination of the corre- pridge University Press, Cambridge, 1997.

lation dimension of the attractor of the storm data and theKantz, H.: A robust method to estimate the maximal Lyapunov ex-

magnetic index could perhaps better describe the degree of ponent of a time series, Phys. Lett. A, 185, 77-87, 1994.

Fig. 12. The predicted (using the zero-order nonlinear prediction
method) values of the times series Bfis plotted along with the
actual values and the normalized error.



B. George et al.: Nonlinear time series analysis of the fluctuations of the geomagnetic horizontal field 183

Kennel, M. B., Brown, R., and Abarbanel, H. D. |.: Determining linear dynamics?, Geophys. Res. Lett., 20, 2817-2820, 1993.
minimum embedding dimension using a geometrical construc-Prichard, D. J.: Short comment for magnetospheric chaos, Nonlin-
tion, Phys. Rev. A., 45, 34033411, 1992. ear Proc. Geophys., 20, 771-774, 1994.

Kerridge, D. J.: Applications of geomagnetism in the oil industry, Provenzale, A., Smith, L. A., Vio, R., and Murante, G.: Distin-
Paper 05.04.02 presented at the 7th Scientific Assembly IAGA, guishing between low-dimensional dynamics and randomness in
Buenos Aires, 1993. measured time series, Physica D, 58, 31-49, 1992.

Klimas, A. J., Vassiliadis, D., Baker, D. N., and Roberts, D. A.: The Roberts, D. A., Baker, D. N., Klimas, A. J., and Bargatze, L. F.:
organized nonlinear dynamics of the magnetosphere, J. Geophys. Indications of low dimensionality in magnetosphere dynamics,

Res., 101, 13089-13113, 1996. Geophys. Res. Lett., 18, 151-154, 1991.
Lundstedt, H.: Solar origin of geomagnetic storms and predictions,Sauer, T., Yorke, J. A., and Casdagli, M.: Embedology, J. Stat.
J. Atmos. Terr. Phys., 58, 821-830, 1996. Phys., 65, 579-616, 1991.

Mitschke, F. and Bmmig, M.: Chaos versus noise in experimental Schreiber, T. and Schmitz, A.: Improved surrogate data for nonlin-
data, in: Complexity and chaos, (Eds) Abraham, N. B., Albano, earity tests, Phys. Rev. Lett., 77, 635-638, 1996.
A. M., Passamante, A., Rapp, P. E., and Gilmore, R., World Sci-Shan, H., Hansen, P., Goertz, C. K., and Smith, K. A.: Chaotic
entific, Singapore, 1993. appearance of the ae index, Geophys. Res. Lett., 18, 147-150,
Newitt, L. R.: Practical needs of users of magnetic declination infor-  1991.
mation, Paper 05.09.07 presented at the 7th Scientific AssemblBharma, A. S.: Assessing the nonlinear behaviour of the magne-
IAGA, Buenos Aires, 1993. tosphere: Its dimension is low, its predictability is high, (US
Osborne, A. R. and Provenzale, A.: Finite correlation dimension for  National Report to IUGG, 1991-1994), Rev. Geophys., 33, 645—
stochastic systems with power-law spectra, Physica D, 35, 357— 650,(Supp), 1995.

381, 1989. Sugiura, M. and Chapman, S.: The average morphology of geomag-
Parkinson, W. D.: Introduction to geomagnetism, Scottish Aca- netic storms with sudden commencement, Abband. Akad. Wiss.
demic Press, Edinburgh, 1983. Goettingen, Math. Physik. KI Sonderh, 4, 3-53, 1960.

Pavlos, G. P., Athanasiu, M. A., Diamantidis, D., Rigas, A. G., and Sutcliffe, P. R.: The development of a regional geomagnetic daily
Sarris, E. T.: Nonlinear analysis of magnetospheric data Part I. variation model using neural networks, Ann. Geophysicae, 18,

Geometric characteristic of th&E index time series and com- 120-128, 2000.
parison with nonlinear surrogate data, Nonlin. Proc. Geophys., 6.Takalo, J. and Timonen, J.: Properties of ae data and bicolored
51-65, 1999a. noise, J. Geophys. Res., 99, 13239-13 249, 1994.

Pavlos, G. P., Athanasiu, M. A., Diamantidis, D., Rigas, A. G., and Theiler, J.: Some comments on the correlation dimension of 1/
Sarris, E. T.: Nonlinear analysis of magnetospheric data Part Il. noise, Phys. Lett. A, 155, 480—-493, 1991.

Dynamical characteristic of th@ E index time series and com- Vassiliadis, D., Sharma, A. S., and Papadopoulos, K.: Time se-
parison with nonlinear surrogate data, Nonlin. Proc. Geophys., 6, ries analysis of magnetospheric activity using nonlinear dynam-
79-98, 1999b. ical methods, in: Chaotic Dynamics: Theory and Practice, (Ed)

Pavlos, G. P., Athanasiu, M. A., Diamantidis, D., Rigas, A. G., Bountis, A., Plenum, New York, 1992.
and Sarris, E. T.: Comments and new results about the magneVvassiliadis, D., Sharma, A. S., Eastman, T. E., and Papadopoulos,
tospheric chaos hypothesis, Nonlin. Proc. Geophys., 6, 99-127, K.: Low-dimensonal chaos in magnetospheric activity fra
1999c. time series, Geophys. Res. Lett., 17, 1841-1844, 1990.

Pavlos, G. P., Diamadidis, D., Adamopoulos, A., Rigas, A. G., Vestine, E. H., Laporte, L., Lange, I., and Scott, W. E.: The ge-
Daglis, I. A., and Sarris, E. T.: Chaos and magnetospheric dy- omagnetic field — its description and analysis, Publi. No. 580,
namics, Nonlin. Proc. Geophys., 1, 124-135, 1994. Carnegie Institution of Washington, Washington, 1947.

Pavlos, G. P., Kyriakov, G. A., Rigas, A. G., Liatsis, P. I., Trochout- Wang, T.: Fractals and magnetic storm, Ann. Geophysicae, 14,
sos, P. C., and Tsonis, A. A.: Evidence for strange attractor struc- 888-892, 1996.
tures in space plasmas, Ann. Geophysicae, 10, 309-322, 1992.Wolf, A., Swift, J. B., Swinney, H. L., and Vastano, J. A.: Deter-

Price, C. P., Prichard, D. J., and Bischoff, J. E.: Nonlinear input- mining Lyapunov exponents from a time series, Physica D, 16,
output analysis of the auroral electrojet index, J. Geophys. Res., 285-317, 1985.

99, 13227-13 238, 1994. Wright, R. W.: lonospheric jet current, Nature, 194, 1169-1170,

Prichard, D. J. and Price, C. P.: Is tAd’ index the result of non- 1962.



