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Abstract. A detailed nonlinear time series analysis of the
hourly data of the geomagnetic horizontal intensityH mea-
sured at Kodaikanal (10.2◦ N; 77.5◦ E; mag: dip 3.5◦ N) has
been carried out to investigate the dynamical behaviour of
the fluctuations ofH . The recurrence plots, spatiotemporal
entropy and the result of the surrogate data test show the de-
terministic nature of the fluctuations, rejecting the hypothesis
thatH belong to the family of linear stochastic signals. The
low dimensional character of the dynamics is evident from
the estimated value of the correlation dimension and the frac-
tion of false neighbours calculated for various embedding di-
mensions. The exponential decay of the power spectrum and
the positive Lyapunov exponent indicate chaotic behaviour
of the underlying dynamics ofH. This is also supported by
the results of the comparison of the chaotic characteristics
of the time series ofH with the pseudo-chaotic characteris-
tics of coloured noise time series. We have also shown that
the error involved in the short-term prediction of successive
values ofH , using a simple but robust, zero-order nonlin-
ear prediction method, increases exponentially. It has also
been suggested that there exists the possibility of character-
izing the geomagnetic fluctuations in terms of the invariants
in chaos theory, such as Lyapunov exponents and correlation
dimension. The results of the analysis could also have impli-
cations in the development of a suitable model for the daily
fluctuations of geomagnetic horizontal intensity.

Key words. Geomagnetism and paleomagnetism (time vari-
ations, diurnal to secular) – History of geophysics (solar-
planetary relationships) Magnetospheric physics (storms and
substorms)

1 Introduction

The geomagnetic field pervades the region around the Earth,
extending to several times of the radius of the Earth. Solar
output, in terms of solar plasma and magnetic field, ejected
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out into the interplanetary medium contributes greatly to the
perturbation in the geomagnetic field. Episodes of extra or-
dinary fluctuations in Earth’s magnetic field were detected as
storms in the mid 1800’s. The analysis of the fluctuations
in the geomagnetic field has many practical applications in
magnetic navigation, orientation control, geophysical explo-
ration, etc. (Newitt, 1993; Kerridge, 1993; Gonzalez et al.,
1994; Sutcliffe, 2000). The analysis of storm morphology
has been undertaken by several authors. Different defini-
tions of geomagnetic storms have been given by Gonzalez
et al. (1994). According to the classical definition, a geo-
magnetic storm occurs when the dailyAp index exceeds 29,
a minor storm occurs when 30≤ Ap < 50; a major storm
occurs when 50≤ Ap < 100 and a severe storm occurs
whenAp ≥ 100 (Lundstedt, 1996).

A continuous recording of any of the components of the
geomagnetic field typically exhibits two types of variations:
a smooth, regular variation, known asSq, and the solar
quiet day variation, which arises as the magnetic signature
of the E-region ionosphere current driven by a dynamo ac-
tion (Campbell, 1989) and a rapid irregular fluctuation, re-
ferred to as a geomagnetic disturbance or storm, the mag-
nitude of which may be such that the regularSq variation
is swamped and thus, not easily discernible. Although the
Sq variations are the most regular of all the geomagnetic
field variations, tending to repeat itself with a periodicity
of 24 h, significant day-to-day differences do occur (Hib-
berd, 1981; Sutcliffe, 2000). At low and middle latitude
stationsH , is known to change drastically during a geomag-
netic storm. Wright (1962) found that theH field at Ibadan
(dip lat. 3◦ S) for any hour of the day was lower on inter-
national disturbed (ID) days than on international quiet (IQ)
days. Bharghava and Subramanyan (1964) found that at Ko-
daikanal (10.2◦ N; 77.5◦ E; mag: dip 3.5◦ N), there is little
variation in the daily range ofH andZ on disturbed days
when compared to that under quiet conditions. Vestine et
al. (1947) and Wright (1962) also found that the daily range
of H at low-latitudes remains unchanged on magnetically ac-
tive days. Bhargava and Yacob (1969) found a systematic
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Fig. 1. (a)Time series of the geomagnetic fieldH. (b) Delay repre-
sentation of the time series ofH.

decrease inH at low-latitudes, with an increasingAp in-
dex during extremely quiet periods and suggested the effect
is associated with the interaction of the solar wind on the
magnetosphere. One of the objectives of investigation of the
dynamical behaviour of the fluctuations of the geomagnetic
field is to predict storms. Wang (1996) has applied fractal
theory in a quantitative analysis of geomagnetic storms and
has estimated the correlation dimension of the attractor for
storm data from the Beijing observatory (40.0◦ N, 116.2◦ E).

Nonlinear dynamic methods have been applied to mag-
netospheric data in order to study the underlying dynamics
(Sharma, 1995; Klimas et al., 1996). Studies using these
methods have given results supporting the concept of mag-
netospheric chaos (Vassiliadis et al., 1990, 1992; Robert et
al., 1991; Shan et al., 1991; Pavlos et al., 1992, 1994, 1999a,
b, c). However, several studies have given evidence against
the hypothesis of magnetospheric chaos and indicate the sig-
nificant role of the stochastic solar wind driver (Prichard and
Price, 1993; Price et al., 1994; Takalo and Timonen, 1994,
Prichard, 1994). Klimas et al. (1996) have given an excellent
review of the studies on these aspects. The criticism about
the magnetospheric chaos has been recently addressed in a
series of papers by Pavlos et al. (1999a, b, c). They have

tested the null hypothesis that the observedAE index signal
is generated by a linear stochastic signal, possibly perturbed
by a static nonlinear distortion. In the first paper (Pavlos et
al., 1999a) of the series, they have used four distinct geomet-
ric parameters derived from the slope of the correlation in-
tegral as discriminating statistical procedures in order to test
the null hypothesis of the nonlinear stochastic surrogate data,
which have the same power spectrum and amplitude distri-
bution as the original data. In the second paper (Pavlos et
al., 1999b), dynamical characteristics, such as Lyapunov ex-
ponents, nonlinear dynamic models and mutual information,
were used to test the null hypothesis. The results of these
tests suggest the rejection of the null hypothesis that theAE

index signal belongs to the family of stochastic signals un-
dergoing a static nonlinear distortion, i.e. the results of these
studies strongly support the hypothesis of nonlinearity and
chaotic behaviour of the underlying dynamics of the magne-
tospheric system. In continuation of these studies, they have
introduced significant theoretical concepts about the magne-
tospheric system and its dynamical interaction with the so-
lar wind (Pavlos, 1999c). Based on the comparison of the
observational behaviour of the magnetospheric system with
the results of the analysis of the different types of stochastic
and deterministic input-output systems, they have observed
that the hypothesis of low-dimensional chaotic behaviour of
the magnetospheric dynamics remains a possible and fruitful
concept which must be developed further. Hence, we feel
that the tools of nonlinear time series analysis can be used
with confidence in order to obtain useful information about
the internal deterministic component of a magnetospheric
time series.

Our main objective in this work is to carry out a detailed
nonlinear time-series analysis of the time series of the mea-
surements of the geomagnetic horizontal fieldH . The data
we used in this analysis represent the geomagnetic horizon-
tal intensityH , measured during the year 1991 at a one hour
interval at the Kodaikanal observatory and published by the
Indian Institute of Geomagnetism, Bombay. The importance
of this data is thatH varies drastically during the year and in
addition, we noted 33 storms, out of which five were severe.
The time series ofH is plotted in Fig. 1a and its delay repre-
sentation in Fig. 1b. The origin of the values ofH has been
shifted to 39 000 nT.

2 Nonlinear time series analysis

In a purely deterministic system, the states of all future times
are determined once its present state is fixed. Thus, we can
study the dynamics of the system by studying the dynam-
ics of the corresponding state space for the study of systems
with deterministic properties. However, at times, the only
information of the system available is a series of univariate
measurements equidistant in time, i.e. a time series. Un-
der these circumstances, one has to construct a new state
space in which the mapping from one point of the trajectory
to the successive one is unique. This is accomplished using
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time delay coordinates. Embedding theorems (Sauer et al.,
1991) guarantee that for an appropriate delay depending on
the data, at most 2d + 1 delay coordinates are enough, when
d is the fractal dimension of the attractor. A time series is
a sequence of scalar measurements of some quantity which
depends on the current state of the system, taken at multiples
of a fixed sampling time:

sn = s(y(n1t)) + ηn, (1)

whereηn is the measurement noise. A delay reconstruction
in m dimensions is then found by the vectorsyn, given by

yn = (sn−(m−1)v, sn−(m−2)v, . . . , sn−v, sn). (2)

The time difference in number of samplesv between adja-
cent components of the delay is referred to as thelag or delay
time. One of the problems of the nonlinear time-series anal-
ysis is to find an optimal embedding dimensionm. However,
for many practical purposes, the most important embedding
parameter is the productmτ of the embedding dimensionm
and the delay timeτ , sincemτ is the time span represented
by an embedding vector. A precise knowledge ofm is only
required when we want to exploit determinism with minimal
computational effort (Kantz and Schreiber, 1997). Neverthe-
less, there are several indicators of an optimal embedding di-
mensionm. One such indicator is the correlation dimension
D, defined by

D = lim
r→0

ln C(r)

ln r
, (3)

whereC(r) is the correlation sum for radiusr, which reveals
a scaling profile asC(r) ∼ rd for r → 0. The correlation
sum depends on the embedding dimensionm of the recon-
structed phase space and the length of the time seriesN as

C(r) =
2

N(N − 1)

N∑
i=1

N∑
j=i+1

2(r − ‖yi − yj‖), (4)

where2 is the Heaviside step function,2(a) = 0 if a ≤ 0
and2(a) = 1 for a > 0. The scaling exponentd increases
with m and saturates to a final value ofD for sufficiently
large embedding dimensionmo. In most cases,mo may be
the smallest integer larger thanD (Ding et al., 1993). When
the slopesd of the correlation integral for various embed-
ding dimensions reveal a plateau at low values ofr and the
plateau converges for increasingm, then there is strong ev-
idence for a low-dimensionality of the underlying dynamics
of the system. Calculation of the correlation dimension from
the time series is easy, compared to the calculation of other
dimensions and, in most cases, gives a good approximation
to the actual dimension of the attractor. Another technique
to estimate an optimal value ofm is to look for the closed
false neighbors (FNN) in the phase space at a given value
of m (Kennel et al., 1992). As the embedding dimension
increases, the number of false neighbours decreases. Thus,
one can detect the minimal embedding dimension which cor-
responds to the minimum number of false neighbours. These

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

fr
ac

tio
n 

of
 fa

ls
e 

ne
ig

hb
ou

rs

m

Fig. 2. The fraction of the closest false neighbours as a function of
the embedding dimensionm for the time series.

techniques give the optimal number of independent variables
required to reconstruct the underlying attractor of the dynam-
ical system from the time series. Most of the significant char-
acteristics of the original phase space are carried over to the
reconstructed phase space for the sufficient large embedding
dimension obtained in the above discussed methods. Math-
ematically speaking, the geometrical characteristics of the
original phase space are topologically equivalent to its mir-
ror dynamical flow in the reconstructed phase space. Conse-
quently, it is possible to make both qualitative and quantita-
tive statements about the system based on the time series by
using the tools of a nonlinear time-series analysis. Thus, it is
relevant to carry out a detailed, nonlinear time-series analy-
sis of the fluctuations of the geomagnetic horizontal intensity
H. The results of the analysis are discussed in the following
section.

3 Results and discussion

We started the analysis by estimating an optimal value of
the embedding dimensionm, using the method of the closest
false neighbours. The fraction of the closest false neighbours
as a function of the embedding dimension is plotted in Fig. 2.
It is evident from the figure that the fraction of false neigh-
bours decreases drastically after the first few values ofm. In
order to establish the low dimensionality of the attractor, we
have also calculated the correlation dimension.

Attractors of dissipative chaotic systems generally have
very complex geometry and hence, are called the strange at-
tractors. One of the parameters that characterizes an attractor
is its dimension, which can be regarded as a measure of the
amount of information necessary to specify the position of a
point on the attractor within a given accuracy. The correla-
tion dimension is one such parameter which depends on the
spatial correlation of points on the attractor.

The temporal correlation present in a time series can lead
to a spurious estimation of the correlation dimension of the
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Fig. 3. The space-time separation plot for the time series ofH.

Initially, the curves increase quickly and later, the stable diurnal
oscillations repeat.

attractor (Theiler, 1991). In order to remove this spurious ef-
fect, the temporally correlated points are excluded from the
pair counting in the correlation sum, i.e. the sum in Eq. 4
is restricted to pairs of points whose time indices differ by
at leastω, called the Theiler window (Theiler, 1991). Heg-
ger et al. (1999) have suggested that the value ofω should
be chosen generously. The space-time separation plot intro-
duced by Provenzale et al. (1992) provides a good means of
determining a sufficient value ofω (Hegger et al., 1999). In
the presence of temporal correlations, the probability that a
given pair of points has a distance smaller thanr depends on
bothr and also on the time1t between the two points. In a
space-time separation plot, the number of pairs is plotted as
a function of two variables, the time separation1t and the
spatial distancer (Hegger et al., 1999).

The space-time separation plot of the geomagnetic hori-
zontal fieldH is given in Fig. 3. The diurnal variability
is dominant in this system and is reflected in Fig. 3. The
temporal correlation is evident within the first 12 time steps
where the lines increase consistently. However, the oscilla-
tions saturate after a few cycles. To be safe, we have cho-
sen the minimum correlation time to be 100. However, we
have varied the value of the Theiler parameterω from 100
to 1000 for the calculation of the correlation dimension, but
there was no significant difference. The value of the correla-
tion dimension calculated is 3.70± 0.04 which corresponds
to a good plateau, as shown in Fig. 4. This fractional cor-
relation dimension indicates the existence of a strange, low
dimensional attractor.

We then analyzed the deterministic nature of the time se-
ries. This is important since a finite time series with a broad
band power spectrum may be a realization of a stochas-
tic process governed by an autoregressive moving average
model or of a low dimensional deterministic chaotic pro-
cess (Eckman and Ruelle, 1985). It has also been noted that
some geometrical and dynamical characteristics (low corre-
lation dimension and positive Lyapunov exponent, etc.) of

0

2

4

6

8

10

12

14

16

18

0 50 100 150 200 250 300 350 400

d(
r)

r

(a)

1e-07
1e-06
1e-05

0.0001
0.001

0.01
0.1

1

10 100 1000

C
(r

)

r

(b)

Fig. 4. (a) Local slopes of the logarithm of the correlation sum
for the geomagnetic horizontal intensityH for m = 12, τ = 10
andω = 100. The correlation dimensionD = 3.70 ± 0.04. (b)
The correlation sumC(r) of H for m = 8, 9, . . . , 20, τ = 10 and
ω = 100.

the low dimensional chaotic dynamics can also be observed
from a particular linear stochastic process. We employed the
method of surrogate data and also the Recurrence Plots (Eck-
man et al., 1987) to distinguish between linear stochastic and
deterministic dynamics.

The method of surrogate data has been reported to be a
successful tool of choice for the identification of a nonlin-
ear deterministic structure in an experimental data (Mitschke
and D̈ammig, 1993). It is specifically devised to contrast a
data set under study with data that are similar with respect
to linear correlations, but otherwise purely random. Accord-
ing to this method, the geometrical and dynamical charac-
teristics of the data under study is compared with those of
stochastic signals which have the same Fourier amplitudes
and the same distribution of values. If the behaviour of the
original data and the surrogate data are significantly differ-
ent in such characteristics, then it may be safely concluded
that the process under study cannot be described by a sta-
tionary, linear Gaussian stochastic model. The significance
of the difference of the local slopes of the correlation sums
can be defined as

S =
µ − µorig

σ
, (5)

whereµ is the mean value of the local slopes of the correla-
tion sums of different surrogates, andσ is their standard de-
viation (Mitschke and D̈ammig, 1993; Pavlos et al., 1999a).
For our analysis, a group of 40 surrogates of the time se-
ries H were generated based on the algorithm of Schreiber
and Schmitz (1996). The plot of the local slopes of the cor-
relation sums of the surrogates, along with that ofH as a
function of ln(r), is given Fig. 5a. Figure 5b gives its mean
value and the standard deviation (S. D.). For the region where
S > 2, we can reject with a confidence above 95% the null
hypothesis that the time series ofH is a realization of a linear
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Fig. 5. (a)The local slopes of the correlation sums of the surrogates
as function of ln(r) for m = 12, τ = 10 andω = 100. (b) The mean
values of the local slopes of the surrogates with standard deviation
for m = 12, τ = 10 andω = 100. (c) Plot of the significance of the
differenceS versus ln(r).

stochastic process (Pavlos et al., 1999a). As shown in Fig. 5c,
the significance of the differenceS reaches above 7 for small
values ofr, and remains above 2 for a larger interval of small
r values.

We have also used the recurrence plot of the time series
of H to identify the structure in the data. Recurrence plots

Fig. 6. The recurrence plot of the time series ofH.

are useful to graphically detect hidden patterns and structural
changes in data or to see similarities in patterns across the
time series under study (Eckman et al., 1987). Once the
dynamical system is reconstructed by means of delay co-
ordinates, the distances between all pairs of vectorsyi and
yj are computed and various colour-codes are assigned to
different distances. In a two-dimensional recurrence plot, a
colour-code at position(i, j) specifies the distances between
the vectorsyi andyj . For random signals, a uniform distri-
bution of colours over the entire plane is obtained, whereas
for deterministic signals, the recurrence plot contains beau-
tiful structures. The recurrence plot in the grey scale of the
time series in this study is given in Fig. 6, which provides
evidence of the determinism in the data.

In addition to these techniques, we have also computed the
spatiotemporal entropy. This quantity compares the distribu-
tion of distances between all pairs of vectors in the recon-
structed phase space with distances between different orbits
evolving in time. For random signals, the value of the spa-
tiotemporal entropy will be 100%, whereas for deterministic
signals the value lies in between 0 and 100. In our case the
value computed was close to zero, showing perfect structure
in the data. From the above observations, we can safely con-
clude that the geomagnetic horizontal intensityH does not
belong to the family of linear stochastic signals. Thus, the
fluctuations observed in the time series ofH are due to a low
dimensional deterministic process.

It has been observed that a time series of coloured noise
can also exhibit a power law power spectrumω−α which is
typical of a chaotic time series. The correlation dimensionD

is related toα by D = 2/(α −1) and hence, a coloured noise
time series can also lead to a low correlation dimension (Os-
borne and Provenzale, 1989; Theiler, 1991). A time series of
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that of the coloured noise with the same correlation dimensionD =
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coloured noise can be generated by letting

x(j) =

N/2∑
k=1

Ck cos(2πjk/N − φk) for j = 1, 2, . . . , N, (6)

where the coefficientsCk, related to the power law power
spectrumP(k) ∝ k−α by

Ck =

[
P(k)

2π

N

]1/2

(7)

and the phasesφk, are randomly distributed in[0, 2π]. Pav-
los et al. (1992) have discussed the methods to compare the
chaotic characteristics of an experimental time series with
the pseudo-chaotic characteristics of a coloured noise time
series.

The autocorrelation coefficients ofH and that of the
coloured noise time series with same fractal dimension is
plotted in Fig. 7. For small lag times, the autocorrelation
coefficient ofH drops quickly, whereas that of the coloured
noise decreases very slowly. There is also a significant dif-
ference in the decorrelation time. The autocorrelation coef-
ficient of H drops abruptly by days 14 and 15 and reaches
zero by day 40. However, the coloured noise takes about 72
days to become decorrelated.

The randomization of the phases of a deterministic chaotic
signal can destroy its low dimensional chaotic profile. How-
ever, this profile of a coloured noise time series remains in-
variant under the phase randomization (Pavlos et al., 1992).
We have compared the low dimensional profile of the time
series ofH to that of the time series obtained by the random-
ization of phases of the time series ofH. The phase random-
ized time series ofH was obtained from the Fourier series
representation ofH

x(ti) =

∑
k

Ck cos(ωkti + φk), (8)
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Fig. 8. (a) Plot of the local slopes of the logarithm of the corre-
lation sums of the phase randomized time series ofH for m =

1, 2, . . . , 20, τ = 10 andω = 100. (b) The same for the original
times series ofH for m = 12, 13, . . . , 20, τ = 10 andω = 100.

where the phasesφk are distributed randomly on the interval
[0, 2π ]. Figure 8a shows the local slopes of the logarithm of
the correlation sums of the phase randomized time series of
H and Fig. 8b shows that of the original time series ofH . It
is evident from these figures that the low dimensional chaotic
profile is destroyed by the phase randomization.

We then compared the stationarity of these two times se-
ries. The fractional Brownian motions with coloured noise
profiles can have a low dimensional character, but they are
not stationary signals unlike motions on a strange attractor
(Pavlos et al., 1992). For a stationary process, the probabil-
ity density in phase space must be invariant with time. The
probability density of the time series ofH is calculated by
dividing the range of the values ofH into short intervals and
counting the values ofH which fall in those intervals. Fig-
ure 9a shows the probability density calculated for the origi-
nal times seriesH. The solid line shows the probability den-
sity calculated for the entire time series and the filled circles
corresponds to the first half of the time series. The coinci-
dence is very clear in this figure. Figure 9b shows the prob-
ability calculated for the phase randomized time series ofH.

In this figure, the solid line corresponds to the entire time se-
ries and the dashed line with filled circles corresponds to the
first half of the series. The coincidence in this figure is very
low and this reveals the nonstationary character of the phase
randomized signal. These results also show the deterministic
character of the time series ofH.

The power spectrum of the time series ofH shows expo-
nential decay which excludes the possibility of random be-
haviour and thus, indicates the chaotic behaviour of the time
series (Fig. 10). It is also evident from Fig. 10 that there
are five distinct peaks and they corresponds toAp = 300 nt,
300 nt, 179 nt, 236 nt, 300 nt, respectively, and hence, repre-
sent severe storms.

One important part of the nonlinear time series analysis is
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half of the series (filled circles).(b) The probability density function
of the phase randomized time series ofH based on the entire time
series (solid line) and on the first half of the series (dashed line with
filled circles).

the calculation of Lyapunov characteristic exponents which,
if positive, by definition, are the most striking evidence of
chaos (Kantz, 1994). The first algorithm to a compute Lya-
punov exponent for a time series was introduced by Wolf et
al. (1985). One of the drawbacks of the algorithm of Wolf
et al. (1985) is the strong dependence of the embedding di-
mension (Kantz, 1994). In this work, we used the algorithm
developed by Kantz (1994) to calculate the maximum Lya-
punov exponent. According to this method, one has to com-
pute

S(1n) =
1

N

N∑
n0=1

ln(
1

|U(yno)|

∑
ynεU(yno )

| sno+1n − sn+1n |

)
(9)

for a pointyno of the time series in the embedding space,
whereU(yno) is the neighborhood ofyno with diameterr.
This is repeated for many values ofn0 so that the fluctuations

0.01

0.1

1

10

100

1000

10000

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

P
ow

er

Frequency (0.001)

Fig. 10. The power spectrum of the times series withw = 0.001.
The first part of the spectrum corresponds to an abrupt decay and
the second part corresponds to a slow decay, as shown by the dis-
continuous lines.

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

0 5 10 15 20 25 30 35 40 45

ex
p(

S
)

Dn

Fig. 11.The curve ofeS(1n) for the embedding dimensionm = 12.
The slope of the dashed line is 0.25± 0.006 and it is the maximum
Lyapunov exponent of the time series ofH .

of the effective expansion rates are averaged out. For an in-
termediate range of values of1n, S(1n) increases linearly
with slopeλ, which is our estimate of the maximal Lyapunov
exponent. In this work, we have repeated the computation
of S(1n) for different values of the embedding dimension
m and the diameter of the neighbourhoodr. The maximum
Lyapunov exponent was estimated to beλ = 0.25 ± 0.006
for the time series ofH (Fig. 11).

Sensitive dependence on initial conditions is an impor-
tant feature of a chaotic system. The average exponential
rate at which initial trajectories diverge is described by the
Lyapunov exponent. Thus, the average error made when
forecasting the future measurements of a chaotic system in-
creases exponentially with time, even though it is governed
by a deterministic law. The length of the period, over which
accurate, short-term predictions of successive fluctuations of
the signal, is determined by the accuracy of the initial condi-
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Fig. 12. The predicted (using the zero-order nonlinear prediction
method) values of the times series ofH is plotted along with the
actual values and the normalized error.

tions and the Lyapunov exponent. The prediction of subse-
quent values of the times series ofH , using a simple but
robust zero-order nonlinear prediction method (Kantz and
Schreiber, 1997), is given in Fig. 12, along with the nor-
malized root mean-square errors. It may be noted that the
root mean-square errors increases exponentially. This could
be seen as further evidence of the deterministic nature of the
fluctuations and also of the underlying chaotic behaviour.

4 Conclusion

In this work, an investigation of the fluctuations of the time
series of the geomagnetic horizontal intensityH , using the
tools of nonlinear time series analysis, has been carried out.
The recurrence plots and the results of surrogate data method,
in addition to the estimate of spatiotemporal entropy, shows
the deterministic nature of the data. We have also compared
the chaotic characteristics of the time series ofH with the
pseudo-chaotic characteristics of coloured noise time series
generated by the phase randomization of the original time
series. The results of the comparison also reveal the deter-
minism in the data. In addition to the estimated value of the
correlation dimension, the analysis of the data, according to
the method of the closest false neighbours, also shows the
low dimensional character of the underlying dynamics. The
positive value of the maximum Lyapunov exponent and the
exponential decay of the power spectrum shows the chaotic
behaviour of the dynamics. Thus, the physical process under-
lying the fluctuations ofH is deterministic, low dimensional
and chaotic. We have also shown that the error involved in
the short-term prediction of the successive values ofH , using
a simple but robust, zero-order nonlinear prediction method
(Kantz and Schreiber, 1997), increases exponentially and this
indicates the sensitive dependence on the initial conditions.
Wang (1996) has proposed that a combination of the corre-
lation dimension of the attractor of the storm data and the
magnetic indexk could perhaps better describe the degree of

solar disturbance than the single parameterk. We have es-
timated both the geometric and dynamical invariants of the
attractor for the geomagnetic horizontal intensity, such as the
correlation dimension and Lyapunov exponents, and we feel
that it would be more advantageous to include the dynamical
invariants, such as Lyapunov exponents, into this combina-
tion to describe the solar disturbance. In general, the quan-
tities involved in chaos theory could be used to characterize
the fluctuations of the geomagnetic intensity and hence, to
describe the associated phenomena more accurately. The re-
sults of the analysis could also have implications in the de-
velopment of a suitable model for the daily fluctuations of
geomagnetic horizontal intensity.
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