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Abstract. Small-amplitude compressional magnetohydro-
dynamic-type waves are studied in the magnetosphere. The
magnetosphere is treated as a rarefied plasma with anisotropy
in the kinetic pressure distribution. The parallel and per-
pendicular pressures are defined by general polytropic pres-
sure laws. This double-polytropic model can be considered
as a natural extension of the magnetohydrodynamic (MHD)
model when the plasma is collisionless.

Generalized dispersion relations for surface and body
waves are derived and analyzed for an isolated magnetic slab.
The waves are confined to the slab. For specific polytropic
indices, the results obtained in the (i) Chew-Goldberger-Low
(CGL) double-adiabatic and (ii) double-isothermal approxi-
mations are recovered.

Key words. Magnetospheric physics (MHD waves and in-
stabilities; plasma sheet; plasma waves and instabilities)

1 Introduction

The study of wave dynamics in inhomogeneous plasmas is
of fundamental interest in solar and astrophysical plasmas.
Waves are important in their own right since they reflect the
stable dynamic behaviour of the objects they occur in. They
are also important because they transport momentum and en-
ergy. When part of their momentum and energy is dissipated,
they can heat and accelerate the plasma. Finally, they can be
used as probes for investigating the structure and composi-
tion of the plasma in which they are observed.

In a normal gas, collisions between the particles ensure
that they have the same temperature, irrespective of type; col-
lisions provide a mechanism to propagate pressure and tem-
perature changes, and dissipation in the form viscosity is a
form of collision, which also ensure that the equilibrium dis-
tribution of particles speeds is Maxwellian. The plasmas that
are found in the extended solar atmosphere and solar wind, in
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planetary magnetospheres and in interstellar space (exclud-
ing cold dense molecular clouds), are very different from an
ordinary gas, being collisionless. Having in mind what col-
lisions can introduce in a plasma, we can easily see what the
absence of collisions will produce. Different types of parti-
cles can have different temperatures. The particle distribu-
tion function can be very different from Maxwellian. The
important role of magnetic fields in plasmas also means that
the distribution function may no longer be isotropic in veloc-
ity space.

In the Earth’s magnetosphere the mean free path for par-
ticles is long compared to other dimensions in the plasma.
When the cyclotron frequency is much larger than the col-
lisional frequency, the particles gyrate many times around a
line of magnetic force between collisions. The presence of
the magnetic field will induce a split in the pressure, intro-
ducing parallel and perpendicular components. These com-
ponents of the pressure are not necessarily equal. However,
thermal anisotropy and any strong electron conduction ve-
locity (relative to the ions) generally excite plasma oscilla-
tions that scatter the particles, pulling the thermal motions
toward isotropy (p‖ ∼ p⊥). Thus, for instance, in the high-
speed tenuous solar wind, the anisotropic expansion main-
tains a limited but measurable thermal anisotropy. On the
other hand, no significant change has been found for wave
propagation in the solar corona (e.g. Ballai et al., 2002). In
the case of the magnetosphere, for a typical number density
(107 m−3) and temperature (106 K), we obtain that the ion
collisional time is of the order of 5× 107 s, so a collisionless
plasma means that waves have periods shorter than 5×107 s,
i.e. waves with a frequency larger than 20 nHz.

The main complication arising from the presence of aniso-
tropy is the fact that changes in anisotropy, or equivalently in
pitch-angle scattering, are by definition a kinetic effect, and
their proper description within fluid theory remains a funda-
mental but unresolved problem in plasma physics. Techni-
cally speaking, the closure of fluid equations requires the in-
troduction of two equations of state, one for parallel and the
other one for perpendicular pressure. In spite of much effort,
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there is no generally accepted form for the two equations of
state.

In such a medium, waves that are generated primarily by
the free energy of the particle distribution functions are the
means to relax this free energy. Waves, once amplified, can
heat particles, permit an exchange of energy between differ-
ent populations of particles and precipitate magnetospheric
particles into the atmosphere.

One approach in the problem of physical properties of
a rarefied plasma is the CGL theory developed by Chewet
al. (1956). The usual MHD equations are derived from
the Boltzmann equation, using an expansion in powers of
the collisional mean free path. In this case the plasma is
collision-dominated and, therefore, the collisional term in the
Boltzmann equation is the leading term, with all other terms
being treated as perturbations. When the density is so small
that the plasma can be considered as a collisionless medium,
a different form of equations can be derived from the Boltz-
mann equation, using an expansion in power of Larmor ra-
dius; here, the role of the collisional term is played by the
Lorentz force. This approximation can be considered as an
adiabatic one, since it depends on the Larmor frequency be-
ing large compared to another frequencies.

The aim of the present paper is to consider the effect of
pressure anisotropy on wave propagation in a collisionless
plasma, such as that found in the magnetosphere. Compres-
sional waves in the magnetosphere were observed both from
ground-based telescopes and in situ measurements (Samson
et al. 1991; Lin et al., 1992; Ziesolleck and McDiarmid,
1994; Hughes, 1994; Mann et al., 1998, etc.) Parallel to ob-
servations, an intensive analytical research has been carried
out in order to explain the origin of these waves and their role
in the process of, for example, the resonance of the Earth’s
geomagnetic field lines (Rickard and Wright, 1994, 1995;
Wright, 1994, Taroyan and Erdélyi, 2002).

The paper is organized as follows. In Sect. 2 we first intro-
duce the basic equations used in the present paper, emphasiz-
ing the differences between the usual MHD and the equations
used to describe rarefied plasmas. Section 2 is also devoted to
the study of the possible waves that appear in such structures,
and we discuss the limitations of the present model due to in-
stabilities. Finally, in Sect. 2, we derive the dispersion rela-
tion for waves in an isolated slab, using a double-polytropic
pressure law, and we compare our results with those obtained
in collisional isotropic plasmas. The possible modes which
can arise in the considered magnetic slab are represented in
a phase diagram. Finally, we summarize and discuss our re-
sults in Sect. 3.

2 Ducted waves in rarefied plasmas

The starting point for the present discussion is the system of
modified equations for an anisotropic rarefied plasma. The
plasma motion is described by an ideal single-fluid system,
where mass conservation and the induction equation are ex-
pressed through the usual equations of MHD. The momen-

tum equation has a similar form, but the scalar kinetic pres-
sure is replaced by a pressure tensor denoted as

P = p⊥Î + (p‖ − p⊥)bb,

whereÎ is the unit dyadic, andb is the unit vector parallel to
the magnetic field direction. The energy equations in these
two directions are (Hau and Lin, 1995; Ballai et al., 2002)

D

Dt

(
p⊥

ρBγ⊥−1

)
= 0,

D

Dt

(
p‖B

γ‖−1

ργ‖

)
= 0, (1)

where

D/Dt = ∂/∂t + v · ∇ .

Here,γ‖ andγ⊥ are the parallel and perpendicular polytropic
indices, respectively. These indices express the increase in
temperature upon plasma compression. Forγ⊥ = 2 andγ‖ =

3, the usual double adiabatic CGL expressions are recovered,
whereas forγ‖ = γ⊥ = 1 we obtain the isothermal limit.

Let us perturb the system and write all quantities in the
form f0 + f , wheref0 denotes an equilibrium quantity and
f is its Eulerian perturbation. The effect of any steady flow
is neglected, so we setv0 = 0. The equilibrium magnetic
field, B0, is parallel to thez axis and inhomogeneous in the
x direction, i.e.B0 = B0(x)ẑ. We are interested only in
small disturbances about this equilibrium, so all products or
squares of perturbed quantities are neglected. Since the equi-
librium quantities depend onx only, the perturbations can
be Fourier-analyzed with respect to they andz coordinates.
Perturbations oscillate with a frequency,ω, so they are of the
form ∼ exp[iωt + ikyy + ikzz]. The equilibrium quantities
satisfy total pressure balance, viz.

d

dx

(
p⊥0 +

B2
0

2µ

)
= 0. (2)

Before we embark on a discussion of wave propagation in
a structured plasma, it is convenient to highlight some prop-
erties of plasma waves in unbounded media. First of all, slow
waves propagate with the speedcT , modified by the pressure
anisotropy and defined through

c2
T =

c2
S⊥
(c2
S‖

− c2
S⊥
/γ 2

⊥
)+ c2

S‖
v2
A

c2
S⊥

+ v2
A

, (3)

where the squares of the Alfvén and sound speeds in the per-
pendicular and parallel direction are given by

v2
A = B2

0/µρ0, c2
S⊥

= γ⊥p⊥0/ρ0, c2
S‖

= γ‖p‖0/ρ0.

For the isotropic case (i.e.c2
S⊥

= c2
S‖

= c2
S andγ⊥ = 1),

Eq. 3) reduces to the classic cusp speed. However, when
c2
S‖

> c4
S⊥
/[γ 2

⊥
(v2
A + c2

S⊥
)], c2

T can be negative and this
condition gives rise to the mirror instability threshold. If
this condition is satisfied, the magnetic field develops re-
gions of low field strength separated by regions of enhanced
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field strength. Where the field is locally strong, particle mir-
ror points shift in such a way that the plasma density de-
creases. Where the field is locally weak, the plasma den-
sity increases. The mirror instability is a purely growing
wave withω purely imaginary. This instability materializes
first and grows fastest when the normal to the wave front is
oriented nearly perpendicular to the magnetic field lines. If
the mirror instability criterion is satisfied, the increase in the
destabilizing component of the pressure,p⊥0, that attends an
oblique slow mode perturbation exceeds the increase in the
restraining tension in the field and inp‖0, and the perturba-
tion grows.

The cusp speed exceeds the Alfvén speed only if

β‖γ‖ > β⊥γ⊥ + 2 −
2β⊥γ⊥

β⊥γ⊥ + 2
, (4)

whereβ‖ = 2c2
S‖
/(γ‖v

2
A) andβ⊥ = 2c2

S⊥
/(γ⊥v

2
A) are the

plasma-beta parameters in parallel and perpendicular direc-
tions.

The Alfvén wave propagates with a phase velocityω/k,
where

ω2

k2
= v2∗

A = v2
A(1 − 0) . (5)

Here, 0 = (p‖0 − p⊥0)/c
2
Aρ0 is the pressure anisotropy

factor. In contrast to the isotropic case, the phase speed of
Alfv én waves is determined not only by the magnetic field,
but also by the kinetic pressure in the two directions. When
0 = 0 (i.e. in the isotropic case,p‖0 = p⊥0), we recover
the usual Alfv́en velocity. The effect of pressure anisotropy
on the propagation of Alfv́en waves is seen through the in-
troduction of the multiplicative factor(1 − 0), which may
be negative (p‖0 > p⊥0 + B2/µ) and so in this case, the
Alfv én mode may exhibit non-propagating, pure exponential
growth, whereas in the isotropic case the velocity is positive
definite. This instability is called the firehose or balloon-
ing instability. In general, the behaviour of Alfvén waves
can be classified according to the sign of(1 − 0). Thus,
for (1 − 0) > 0, we have a propagating Alfvén mode (colli-
sional MHD). For(1−0) = 0, we obtain a non-propagating,
non-growing perfectly inelastic perturbation. Finally, for
(1 − 0) < 0, we obtain a non-propagating, pure exponential
growth, i.e. the firehose instability. Inspecting the expres-
sion for the anisotropy factor0, we can see that we have to
consider the contribution of all three pressures (p‖0, p⊥0 and
B2

0/2µ) when we study these waves. In the isotropic case,
the frequency is fixed by balancing the inertial force exerted
by a volume of plasma that is oscillating transversally to the
magnetic field lines, against the magnetic tension. Since an
increase in the restoring force increases the frequency, and
0 measures the change in frequency resulting from pressure
anisotropy, it is clear thatp⊥0 acts to increase the restoring
force andp‖0 acts to decrease it. When the two pressures are
equal (isotropic case), their effects cancel.

We return to the discussion of wave propagation in struc-
tured plasmas. Let us consider wave propagation in a mag-
netically isolated double-polytropic plasma confined in a slab

of width x0. The insertion of two interfaces into a homoge-
neous medium, so that a uniform duct is formed, results in the
introduction of a length scale into the model, and the waves
are now dispersive. Our treatment is parallel to the theory
developed by Roberts (1981) for an MHD plasma, but here
we try to emphasize the effects of pressure anisotropy.

The plasmas inside and outside the slab are characterized
by the following equilibrium configuration:{
B(0), p

(0)
⊥
, p

(0)
‖
, ρ(0), |x| < x0,

0, p(e), 0, ρ(e), |x| > x0,
(6)

where the superscripts′0′ and′e′ denote quantities inside and
outside the slab, respectively. The velocity perturbation is
assumed to be of the form of

v = (vx(x), 0, vz(x))e
i(ωt−kz),

soky = 0 andkz = k. We suppose that waves are essentially
confined within the slab inhomogeneity (|x| < x0), being
evanescent inx outside the slab (so|v| → 0 as|x| → ∞).
It is convenient to introduce the so-calledmagnetoacoustic
parametersm(0) andm(e), defined by

m(0)2 = −
(ω2

− k2c
(0)2
S‖
)[ω2

− k2v2
A(1 − 0)]

(c
(0)2
S⊥

+ v2
A)(ω

2 − k2c
(0)2
T )

,

m(e)2 = k2
−

ω2

c
(e)2
S

. (7)

We assume thatm(e)2 > 0, corresponding to waves being
trapped within the slab. According to the sign ofm(0)2, we
can have surface (m(0)2 > 0) or body (m(0)2 < 0) modes
inside the slab whenω2 andk2 are considered real.

Waves propagating in a magnetically isolated slab can be
classified according to whethervx(x) is an even or odd func-
tion of x. If vx(x) is an even function, the waves are kink
waves, while an odd function ofx corresponds to sausage
modes.

Requiring that the transverse velocity component,vx , and
the perpendicular component of the total (gas plus magnetic)
pressure perturbation are continuous at the boundariesx =

±x0, we obtain the dispersion relation for surface waves:

[k2v2
A(1 − 0)− ω2

] = ω2ρem
(0)

ρ0m(e)

{
tanh
coth

}
m(0)x0, (8)

describing sausage (tanh) and kink (coth) magnetoacoustic
oscillations within the slab.

Due to the transcendental form of Eq. (8) we first solve
the dispersion relation in the limit of a slender slab. This
means that we use the long wavelength approximation, i.e.
the wavelengths are much larger that the width of the slab.
For a slender slab (kx0 � 1), tanhm(0)x0 ≈ m(0)x0 and the
dispersion equation for sausage modes takes the form

(ω2
− k2c

(0)2
T )m(e) =

ρe

ρ0

ω2(ω2
− k2c

(0)2
S‖
)

c
(0)2
S⊥

+ v2
A

x0. (9)
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Whenc(0)S‖
= c

(0)
S‖

= c
(0)
S , the isotropic case, Eq. (9) is similar

to the dispersion relation obtained by Roberts (1981). The
limit kx0 → 0 implies the existence of two possible waves,
namelyω2

→ k2c
(0)2
T andω2

→ k2c
(e)2
S . It can be shown

that there are always modes with phase velocity below the
minimum ofcT andc(e)S . Specifically,

ω2
≈ k2c

(0)2
T

[
1 −

ρe

ρ0

c
(e)
S

(c
(e)2
S − c

(0)2
T )1/2

ψ2kx0

]
(10)

if c(0)T < c
(e)
S , where

ψ =
c
(0)2
S⊥

γ⊥(c
(0)2
S⊥

+ v2
A)
.

A second mode arises whenc(0)S‖
< c

(e)
S , and then the disper-

sion Eq. (8) gives

ω2
≈ ×k2c

(e)2
S1 −

(
ρe

ρ0

c
(e)2
S (c

(e)2
S − c

(0)2
S⊥
)

(c
(e)2
S − c2

T )(c
(0)2
S⊥

+ v2
A)
kx0

)2
 . (11)

Dispersion causes shorter wavelength harmonics to travel
slower than larger wavelength harmonics.

The dispersion relation for kink waves in the long wave-
length approximation can be written as

ω2
= k2v2

A(1 − 0)
ρ0

ρe
(kx0). (12)

Let us now look at the extreme of wide slabs (kx0 � 1),
where we suppose thatm(0)x0 → ∞ for kx0 → ∞. We
approximate tanhm(0)x0 by unity and obtain a dispersion re-
lation for both sausage and kink modes of the form

[k2v2
A(1 − 0)]m(e) =

(
ρe

ρ0

)
ω2m(0), (13)

provided bym(0) > 0 andm(e) > 0. This relation coincides
with the dispersion relation obtained by Hau and Lin (1995)
for surface waves at a magnetic surface. Therefore, we can
conclude that the propagation of surface non-leaky waves is
equivalent to propagation at a single interface. In the ap-
proximation of a wide slab, there is no difference between
sausage and kink waves.

For body waves (m(0)2 = −n(0)2 < 0), the dispersion
relation for sausage and kink waves is

[k2v2
A(1 − 0)− ω2

] = ω2 ρen
(0)

ρ0m(e)

{
− tan

cot

}
n(0)x0, (14)

with the tan/cot terms corresponding to the sausage and kink
modes, respectively.

We are interested in the solution of Eq. (14) withω2

tending tok2c2
T , as kx0 tends to zero. To determine this

mode, we suppose that for a small value ofkx0, ω2
≈

k2c2
T (1+ν(k2x2

0)), whereν is a positive constant to be deter-
mined. For sausage modes, in order to have finite values for

tann0x0, we require that the productn0x0 tends to the roots
of tann0x0, i.e.n0x0 → nπ , wheren = 1, 2, . . .. Thus, from
Eqs. (7) and (14) we obtain

n2
0x

2
0 =

(c2
T − c

(0)2
S‖
)(c2

T − v∗2
A )

(c
(0)2
S⊥

+ v2
A)c

2
T ν

= n2π2. (15)

From this relation we determine the coefficientν. The be-
haviour of sausage body waves in a slender slab is given by

ω2
≈ k2c2

T

1 +

ψ4
−

c
(0)2
S‖

−v∗2
A

c
(0)
S⊥

+v2
A

ψ2

n2π2

(
c
(0)2
S‖

c
(0)2
S⊥

+v2
A

− ψ2

)k2x2
0

 , (16)

providedc(0)2S‖
> v∗2

A . The condition imposed here is that the
coefficientν has to be positive, i.e.

β2
⊥

2 + β⊥γ⊥

< β‖γ‖ < 2(1 − 0)+
β2

⊥

2 + β⊥γ⊥

.

Kink modes can be studied in a similar fashion, resulting in
a relation close to Eq. (16), but with(n − 1/2)2π2 in place
of n2π2, which means that kink waves will have a higher
propagation speed than sausage modes.

To consider body waves in a wide slab we look for the
solutions of Eq. (14) forkx0 � 1. Investigating the possible
modes in similar fashion as for surface waves, we find that
whenc(0)2S‖

< v∗2
A ,

ω2
= k2c

(0)2
S‖

(
1 +

(c
(0)2
S⊥

+ v2
A)

2ψ2π2n2

c
(0)2
S‖
(c
(0)2
S‖

− v∗2
A )

1

k2x2
0

)
. (17)

If modified Alfvén waves propagate slower than parallel
sound waves in the slab, the dispersion relation becomes

ω2
= k2v∗2

A ×

×

1 +

(c
(0)2
S⊥

+ v2
A)

2
(
v∗2
A −c

(0)2
S‖

c
(0)2
S⊥

+v2
A

+ ψ2
)
n2π2

v∗2
A (v

∗2
A − c

(0)2
S‖
)

1

k2x2
0

 . (18)

If the modified Alfvén speed and the parallel component of
the sound speed are equal, there will be a wave with disper-
sion relation

ω2
= k2c

(0)2
S‖

×1 +

(c(0)S⊥

c
(0)
S‖

)2

+
1

1 − 0

ψ arctan(ζ )
1

kx0

 , (19)

providedc(e)S > c
(0)
S‖

. In the above equation,ζ is defined as

ζ =
ρ0

ρe

(c
(e)2
S − c

(0)2
S‖
)1/2(c

(0)2
S⊥

+ v2
A)ψ

c
(e)
S c

(0)2
S‖

.
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Fig. 1. The phase speed as a function ofkx0 under the circumstances given in the text for surface waves.
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Fig. 2. The phase speed as a function ofkx0 for body waves.

ULF waves in the magnetosphere can be driven either by
external sources (solar wind impulses or buffeting, magne-
topause Kelvin-Helmholtz instabilities, upstream waves in-
cident form the bow shock) or internal sources (magnetic
reconnection, plasma flows in the magnetotail, resonance
with ring current ions). For typical magnetospheric param-
eters (vA = 380 km/s,cSe = 150 km/s,ρe/ρ0 = 6, c(0)s⊥ =

125 km/s,c(0)S‖
= 118 km/s,0 = 0.04, γ⊥ = 1.8, γ‖ = 1.2,

x0 = 104 km), we study the possible modes in the case of an
anisotropic plasma with a double-polytropic energy law in
isolated magnetic slab. In Fig. 1, surface waves are shown.
They have two propagation windows, one below the cusp
speed (slow waves) and the other (fast waves) situated in the
interval (c(0)S⊥

, c
(e)
S ). Since we imposed that waves are con-

fined within the slab, there are no modes with phase speed
above the external sound speed. For small values ofkx0, we
have two modes described by relations (10) and (11). As
kx0 increases, new modes start to appear but there will be

no modes betweencT andc(0)S‖
. The possible propagation for

body modes is shown in Fig. 2. They are confined within the
interval between the cusp speed and the parallel component
of the sound speed, and they are slow body modes. For the
whole domain, they show an increasing phase velocity with
an increasing of the productkx0.

In general, the effect of anisotropy becomes important for
waves propagating in a plasma with not very small plasma
beta. That is why, in the vicinity of the Sun, where the plasma
beta is very small, the effect of temperature anisotropy can
be neglected when studying the wave propagation in homo-
geneous plasmas, so here the propagation of compressional
waves can be studied within the framework of the usual
MHD with very high accuracy. However, as we go further
from the Sun, the role of anisotropy increases.

Let us make a simple estimation. Compressional waves
in the magnetosphere have been observed intensively in the
last decades; therefore, there is vast literature covering these
phenomena (see, e.g. Strangeway et al., 1988; Takahashi et
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al., 1987, 1990, 1992a, b; Anderson et al., 1990; Takahashi
and Anderson, 1992; Kim and Takahashi, 1999). We try to
model the compressional waves observed in the Earth’s mag-
netosphere. They are often seen in the afternoon sector dur-
ing periods of enhanced geomagnetic activity. Keeping in
mind magnetospheric parameters, we can calculate that the
frequency of fast surface modes calculated with the aid of
Eq. (11) is approximately 20 mHz, which falls in the range
of compressional Pc5 waves.

3 Conclusions

The present study was motivated by the observations of
compressional waves in the outer atmosphere taken by the
Charge Composition Explorer spacecraft as part of the Ac-
tive Magnetospheric Particle Trace Explorers (AMPTE) pro-
gram. The dynamics of slow and fast magnetoacoustic waves
in the magnetosphere was studied when the anisotropy in
the kinetic pressure and a double-polytropic law was con-
sidered. Temperature anisotropy becomes significant in plas-
mas where the kinetic pressure of the plasma is comparable
to the magnetic pressure. The dispersion relations for linear
waves were obtained in a magnetically isolated plasma slab,
modelling the interface between the non-magnetized mag-
netosheath and homogeneously magnetized magnetosphere.
The relative values of the parameters inside and outside the
slab determine the types of wave and, in general, it is not
possible to give explicit forms. However, by solving the dis-
persion relations numerically and by considering the special
case of slender and wide slabs, it was possible to predict the
sort of waves that might be found in rarefied plasmas.

For typical equilibrium quantities, we found that the fre-
quency of slow waves in a slender slab is in the range of the
frequency of magnetospheric compressional Pc5 waves.
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