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Abstract. Simultaneous Common Program Two experi-
ments by the EISCAT UHF radar at Tromsø and the EISCAT
Svalbard radar at Longyearbyen from 00:00 to 15:00 UT on
22 September 1998 and 9 March 1999 have been utilized to
investigate distributions of the ion and neutral temperatures
in the E-region between 105 and 115 km. During the exper-
iments, soft particle precipitations in the dayside cusp were
observed over the Svalbard radar site by the Defense Me-
teorological Satellite Program (DMSP) F11 satellite. It is
found that the dayside electric field in the regions of the low-
latitude boundary of the polar cap and the cusp was greater
and more variable than that in the auroral region. The ion
temperature, parallel to the geomagnetic field at Longyear-
byen, was higher than that at Tromsø during the daytime
from 06:00 to 12:00 UT. The steady-state ion energy equa-
tion has been applied to derive neutral temperature under the
assumption of no significant heat transport and viscous heat-
ing. The estimated neutral temperature at Longyearbyen was
also higher than that at Tromsø. The ion and neutral energy
budget was discussed in terms of the ion frictional heating
and the Joule heating. The results indicate two possibilities:
either the neutral temperature was high in the low latitude
boundary of the polar cap and the cusp, or the heat transport
by the polar cap neutral winds toward the dayside sector was
significant.

Key words. Ionosphere (auroral ionosphere; ionosphere–
atmosphere interactions; polar ionosphere)

1 Introduction

The dynamics and thermodynamics of the F-region polar
thermosphere were extensively explored in 1980s based upon
the various observations made from the Dynamics Explorer
2 satellite (Killeen et al., 1984). One of the most outstanding
features disclosed was that the geomagnetic polar cap and
the dayside cusp were hotter than the auroral region (Hays et
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al., 1984). This was speculated to be a direct consequence of
Joule and soft particle heating in the polar cusp and thermal
advection by the polar cap neutral winds.

To interpret the diurnal variations of the F-region neu-
tral temperature observed by the Fabry-Perot interferome-
ter located at Thule, Greenland (3 = 86◦), McCormac
et al. (1988) performed numerical simulations by using the
NCAR thermospheric general circulation model (TGCM).
They found that the neutral temperature maximum near the
magnetic local noon was primarily due to transport of heat
to the polar cap by parcels heated by auroral, Joule and cusp
sources.

The high-latitude ion temperature depends on the magne-
tospheric energy input. In the presence of strong dc elec-
tric fields, a relative velocity between ions and neutrals re-
sults in an enhancement in the ion temperature through fric-
tional contact with the neutral gases, particularly in the F-
region, because the significant relative velocity between ions
and neutrals exists due to the small collision frequency be-
tween them. A statistical study of the ion frictional heating,
based on the F-region field-parallel ion temperature mea-
sured by the European Incoherent Scatter (EISCAT) UHF
radar (Folkestad et al., 1983), showed that the ion fric-
tional heating at Tromsø (geomagnetic coordinates 66.54◦ N,
103.44◦ E) was observed principally during nights and little
heating occurred on the dayside (Davies et al., 1997). The
maximum of the ion temperature during the night was ex-
plained from the location of the radar relative to the large-
scale ion convection pattern. Since both the ion frictional
heating rate and neutral heating rate due to the Joule dissi-
pation of electric currents are proportional to the square of
the relative velocity between ions and neutrals (Banks, 1980;
St.-Maurice et al., 1999), it is inferred that the neutral heating
at latitudes lower than about 70◦ occurs mainly on the night
side, in contrast to the heating within the polar cap.

The E-region neutral temperature is highly dependent on
Joule and particle heating. Brekke and Rino (1978) stud-
ied energy transfer between the ionosphere and the thermo-
sphere by using the incoherent scatter (IS) radar at Chatanika,
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Alaska (geographic coordinate 65.1◦ N, 147.4◦ W). Since
then, numerous works on the Joule heating rate in the
lower thermosphere have been made from the point of view
of the magnetosphere-ionosphere-thermosphere energy cou-
pling (Lu et al., 1995; Fujii et al., 1999, 2000) and of the
neutral wind effects (Thayer and Vickrey, 1992; Thayer et al.,
1995; Fujii et al., 1998; Thayer, 1998). Some of these works
are based on the IS radar observations in the auroral zone, i.e.
the EISCAT UHF radar at Tromsø (Fujii et al., 1998, 2000)
and some are in the polar cap, i.e. the Sondrestrom radar
(Thayer, 1998). However, there has been no direct compar-
ison between the Joule heating rates in the auroral oval and
the polar cap based on simultaneous observations. Further-
more, it is not yet disclosed whether the E-region polar cap
is hotter than the auroral region, particularly on the dayside.

The dayside E-region neutral dynamics during a magneti-
cally quiet period was studied using the EISCAT UHF radar
at Tromsø in terms of a momentum balance among the vari-
ous forcings such as the Coriolis force, the pressure gradient
force, the viscous force, the tidal force, and the electromag-
netic force (Maeda et al., 1999). In a certain height range be-
tween 106 and 110 km, the Coriolis force was balanced with
the southward pressure gradient force, which corresponded
to the northward temperature gradient. In other words, the
neutral temperature became higher to the north. Since the
momentum balance is maintained locally, the northward tem-
perature gradient derived only from the EISCAT UHF radar
data does not necessarily mean a higher temperature in the
polar cap than in the auroral region.

The EISCAT Svalbard radar at Longyearbyen (geomag-
netic coordinates 75.12◦ N, 113.00◦ E) has been operated
since 1996, (Wannberg et al., 1997). From statistical pat-
terns of the large-scale ion convection derived from the De-
fense Meteorological Satellite Program (DMSP) ion drift
data (Rich and Hairston, 1994), it is inferred that, on the
dayside, Longyearbyen is located beneath the cusp and the
low-latitude boundary of the polar cap and Tromsø in the au-
roral and/or sub-auroral region. It is quite feasible to use the
data obtained simultaneously with the two radars for a study
of dynamics and thermodynamics over the polar cap and the
auroral region.

The purpose of this paper is to investigate ion and neutral
temperature distributions and the related energy budget over
the polar cap, the cusp, the low latitude boundary of the polar
cap and the auroral zone by using the data set obtained from
simultaneous measurements by the EISCAT UHF radar at
Tromsø (called the Tromsø radar, hereafter) and the EISCAT
Svalbard radar at Longyearbyen (called the Svalbard radar,
hereafter). In this work, we used the data obtained by the
monostatic beamswinging method of the Common Program
Two (CP-2) mode: the Tromsø radar with CP-2 version E and
the Svalbard radar with CP-2 version L. The alternating pulse
code was used except for the F-region ion velocity that was
measured with the long pulses. In the CP-2 mode, the line of
sight of the antenna is pointed into four consecutive positions
with a dwell time of about 60 s and 110 s in each position,
resulting in a full cycle time of the antenna of 6 min and 8 min

Table 1. Antenna positions

radar Tromsø radar Svalbard radar

experiment CP-2-E CP-2-L

beam Azimuth(◦) Elevation(◦) Azimuth(◦) Elevation(◦)
Field aligned 182.6 77.5 180.3 81.6
Vertical 180.0 89.9 180.0 90.0
East 166.5 62.9 171.6 63.2
Eastmost 133.3 60.4 144.4 66.6

for the Tromsø radar and the Svalbard radar, respectively.
The antenna positions of the two radars are listed in Table 1.
The altitude resolution is about 3 km.

In Sect. 2, the ion and neutral energy conservation equa-
tions are introduced. The methods of data analysis are de-
scribed in Sect. 3. Section 4 summarizes conditions of the
interplanetary magnetic field and geomagnetic activity. In
Sect. 5, the ion and neutral temperatures and related energy
budgets are discussed. Section 6 summarizes our results.

2 Ion and neutral energy equations

The ion energy equation is written as (Banks and Kockarts,
1973; Schunk, 1977; Banks, 1980; St.-Maurice and Hanson,
1982; Schunk and Nagy, 2000)
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wherepi is the ion pressure,τ i is the ion stress tensor,V i ,
V n, andV e are the ion, neutral, and electron velocities, re-
spectively;Ti , Tn, andTe are the ion, neutral, and electron
temperatures, respectively;mi , mn, andme are the ion, neu-
tral, and electron masses, respectively;ni is the ion number
density,κB is the Boltzmann’s constant,q i is the ion heat flux
vector andνin and νie are the ion-neutral and ion-electron
momentum transfer collision frequencies, respectively. The
term τ i : ∇V i expresses the viscous heating. It should be
noted that Eq. (1) is applied to a single neutral species and not
summed over several neutral species, unlike those of Schunk
(1977), Banks (1980), and St.-Maurice and Hanson (1982).
Here we have assumed that one neutral species having a mass
equal to the mean molecular mass dominates the atmospheric
composition.

St.-Maurice and Hanson (1982) discussed the terms on the
left-hand side of Eq. (1); these are negligibly small in the
F-region, although this is not necessarily so in the E-region.
The terms on the left-hand side were neglected in the present
analysis for simplicity. The second part of the last term on
the right-hand side of Eq. (1) describes the frictional heating
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between ions and electrons. In the E-region, there would be
a large relative velocity between ions and electrons due to
ion-neutral collisions. In this work, however, this term was
neglected as the effects on the ion energy budget might be
small owing to the small electron mass. It was also assumed
thatmi +me = mi because of the small electron mass. Then
the steady-state ion energy balance can be expressed as

Ti = Tn +
mn

3κB

(V i − V n)
2

+
mi + mn

mi

νie

νin

(Te − Ti) (2)

The second term on the right-hand side of Eq. (2) repre-
sents the heating due to the friction between ions and neu-
trals, namely, ‘ion frictional heating’. The heat exchange be-
tween ions and electrons, expressed by the last term on the
right-hand side of Eq. (2), is usually neglected when the elec-
tric field is less than 20 mV/m (Williams et al., 1992; Davies
and Robinson, 1997). The heat exchange between ions and
electrons will be discussed in Sect. 5.1.

When a relative flow is high between ions and neutrals,
the ion thermal velocity distribution may depart significantly
from a Maxwellian form, resulting in an anisotropic distribu-
tion (St.-Maurice and Schunk, 1977; Lathuillere and Hubert,
1989; McCrea et al., 1993). Under such conditions, these
ions can no longer be characterized by a single ion tempera-
ture, since the apparent width of the thermal velocity distri-
bution depends on the direction from which it is observed. As
a first approximation, St.-Maurice and Schunk (1977, 1979)
showed that the ion velocity distribution function is repre-
sented by a bi-Maxwellian with two ion temperatures; paral-
lel and perpendicular to the geomagnetic field. When the heat
exchange between ions and electrons is negligibly small, the
parallel temperatureTi‖ satisfies the following relationship
with the neutral temperature:

Ti‖ = Tn + β‖

mn

2κB

(V i − V n)
2 (3)

where the parameterβ‖ is the partition coefficient for the
parallel ion temperature. The partition coefficient depends
on a collision model, and has been extensively investigated
mainly for the F-region (Winkler et al., 1992; McCrea et al.,
1993; Balmforth et al., 1999; St.-Maurice et al., 1999). In ad-
dition to the anisotropic ion temperatures, non-Maxwellian
line-of-sight ion velocity distributions during periods of high
electric field have been discussed by using the Tromsø radar
data (Lockwood et al., 1987; McCrea et al., 1993).

The energy budget of the neutral gases can be discussed
by using the neutral energy equation (Banks and Kockarts,
1973; Schunk, 1977; Banks, 1980):
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wherepn is the neutral pressure,τn is the neutral stress ten-
sor,nn is the neutral number density,qn is the neutral heat
flux vector, Q and L are the heat source such as a chem-
ical heating and the sink including a radiative cooling, re-
spectively; andνni andνne are the neutral-ion and neutral-
electron momentum transfer collision frequencies, respec-
tively. Here, no particular source and sink are considered.
It is noted that the sum of the ion-neutral heat exchange plus
the direct frictional heating of the neutral gases is what is
referred to as the ‘Joule heating rate’ (Banks and Kockarts,
1973; St.-Maurice and Hanson, 1982):

nnmnνni

mn + mi

[
3κB(Ti − Tn) + mi(V n − V i)

2
]

= σP (E + Vn × B)2 (5)

whereB is the magnetic field,E is the electric field andσP is
the Pedersen conductivity. The second term on the right-hand
side of Eq. (4) expresses electron contribution, which we did
not discuss by assuming that it might be small compared with
the Joule heating effect.

3 Method of analysis

As discussed in Sect. 2, the ion velocity distribution may not
be represented by a Maxwellian under the presence of strong
electric fields. As will be shown later, the electric field at
Tromsø was mostly less than a few tens of mV/m. The ion
temperature was isotropic and the parameterβ‖ = 2/3 in this
case. On the other hand, the electric field at Longyearbyen
was sometimes greater than 50 mV/m, and an anisotropy in
the ion temperature should be taken into account. Although
there are not many experimental studies of non-Maxwellian
ion velocity distributions in the altitude region below 130 km
(Venkat Raman et al., 1981), there have been several ap-
proaches to estimate the temperature partition coefficientβ‖

for E- and F-regions. For polarization-type interactions, St.-
Maurice and Schunk (1977) obtained values of the coeffi-
cient: β‖ = 0.52 for mi/mn = 2, andβ‖ = 0.59 for
mi/mn = 0.5. Monte Carlo simulations by Winkler et
al. (1992) provided values for the electric field of 50 mV/m:
β‖ = 0.51 for O − NO+ interaction andβ‖ = 0.56 for
O+

− N2 interaction. In the present paper, the ion temper-
ature measured with the field-aligned beam was used. Under
the assumption of a bi-Maxwellian ion velocity distribution,
the neutral temperature was calculated from the parallel ion
temperatureTi‖ by using Eq. (3) withβ‖(= 0.54) for both
of the Tromsø and Svalbard radar data. As mentioned above,
the isotropic treatment is more relevant for the period of a
small electric field. The difference between the neutral tem-
peratures derived from the isotropic and anisotropic assump-
tions, however, would be less than a few K in the case of
an electric field of about 20 mV/m; thus we believe the set-
ting of the parameterβ‖ of 0.54 does not affect our results
significantly.

To obtain the neutral wind velocity in the E-region, the
ion drift velocity was used together with the electric field de-
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Fig. 1. From top to bottom: IMFBx , By andBz measured by the WIND spacecraft upstream in the solar wind,H -component of the magnetic
field at Tromsø (TRO) and Longyearbyen (LYB) andAE-index on 22 September 1998 and 9 March 1999. The IMF data are corrected for a
propagation delay from WIND and the Earth’s magnetopause.

duced from the ion velocity data at about 278 km altitude,
where ions and electrons are assumed to move by theE × B

drift. The electric field was derived by combining the long
pulse F-region monostatic ion velocity measurements with
estimates of the magnetic field from the International Geo-
magnetic Reference Field (IGRF) model (International As-
sociation of Geomagnetism and Aeronomy Division I Work-
ing group 1, 1987). Full ion velocity vectors were obtained
by combining the three line of sight observations of the ion
velocity, assuming that the velocity was uniform across the
scattering volumes and did not vary over a cycle time of the
antenna. The neutral horizontal velocity was derived from
the steady-state ion momentum equation neglecting the am-
bipolar diffusion (Rino et al., 1977):

V n = V i − �i(E + V i × B)/(|B|νin) (6)

where �i = e|B|/mi and e is the electrostatic charge
(= 1.6 × 10−19C). The ion-neutral momentum transfer col-
lision frequency,νin, is calculated according to Schunk and
Walker (1973). In deriving the neutral velocity from the mea-
sured ionospheric parameters, there is an uncertainty caused
by the ion-neutral collision frequency (Williams et al., 1994).
The best way to avoid such uncertainties is to use data taken
under conditions of low electric fields and high signal to
noise ratio in a limited height range below about 120 km
(Kofman, 1992; Williams et al., 1994). Although the present
analysis was limited to the region below 120 km, it included
the interval of electric field up to 80 mV/m.

In usual IS spectrum fitting procedures, the Maxwellian
distributions for both of the ion and electron populations are
assumed and the ratio between the electron and ion tem-
peratures below 107 km is given by a model. The EISCAT
Tromsø and Svalbard radar data were analyzed by using the
GUISDAP 1.65 analysis program (Lehtinen and Huuskonen,
1996) and the temperature ratio was given by a model where
it is set to be 1.04 at 105 km. If ions and electrons are in
thermal equilibrium, the ion temperature should be equal to
the electron temperature and consequently the temperature
ratio is 1.0. The difference between the derived temperatures
with different ratios (1.0 and 1.04) is less than a few percent
and we believe the setting of the temperature ratio of 1.04
does not affect our results significantly. When a strong elec-
tric field is applied to the high-latitude E-region, however,
this causes a modified two-stream instability, which heats
the electron population (Schlegel and St.-Maurice, 1981; St.-
Maurice et al., 1981; Williams et al., 1992; Davies and
Robinson, 1997; St.-Maurice and Kissack, 2000). In such
a case of electron heating by the so-called Farley-Buneman
waves, the ratio between the electron and ion temperature
varies with time and in space. In the present analysis, an
IS spectrum fitting was performed as follows: the ratio be-
tween the ion and electron temperatures even below 107 km
was not fixed and the electron and ion temperatures were de-
rived independently by using a modeled ion-neutral collision
frequency when the electric field was greater than 20 mV/m.

In this paper, we have used the data between 105
and 115 km during the periods of 00:00–15:00 UT (02:00–
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(a)

(b)

Fig. 2. DMSP F11 spectrograms of differential energy flux (eV/cm2 s str). Top two line plots show total energy flux (eV/cm2 s str) and
average energy (eV) of ions (red) and electrons (black). Cusp particle precipitation was observed at the time of(a) 10:03–10:04 UT on 22
September 1998 and(b) 09:10–09:11 UT on 9 March 1999.

17:00 MLT at Tromsø and 03:00–18:00 MLT at Longyear-
byen) on 22 September 1998 and 9 March 1999.

4 IMF and geomagnetic conditions

The three components of the interplanetary magnetic field
(IMF) provided by the WIND spacecraft, are represented
in the upper three panels of Figs. 1a and b. They are de-
picted in the geocentric solar magnetospheric (GSM) coordi-
nate system corrected for propagation time to the Earth. The
northward (H ) components of the magnetic field detected by
ground-based magnetometers at Tromsø and Longyearbyen

are shown in the 4th panels and theAE index in the bot-
tom panels, respectively. The IMFBz was about−3 nT from
05:00 to 11:00 UT and then turned to be positive up to 4 nT
on 22 September 1998. The IMF By was positive of about
5 nT except for some negative excursions. On 9 March 1999,
the IMF Bz ranged from−8 to −3 nT except for some posi-
tive excursions. The IMFBy was negative by about−5 nT.

As can be seen in the variations of theH component at
Tromsø and Longyearbyen, the geomagnetic activity was
low on 22 September 1998. The magnitude of the varia-
tions was less than 50 nT at Tromsø and less than 100 nT at
Longyearbyen. TheAE index, however, shows small activ-
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Fig. 3. Electric field strength measured by the EISCAT UHF
radar at Tromsø (Tromsø radar) and the EISCAT Svalbard radar
at Longyearbyen (Svalbard radar) between 00:00 and 15:00 UT on
22 September 1998 and 9 March 1999. The solid line represents
the meridional component and the dotted line the zonal component.
The positive values indicate the northward and eastward compo-
nents, respectively.

ity just after 06:00 UT which seems to be related to magnetic
disturbances in the night side since the magnetic activity at
Tromsø and Longyearbyen was very small. In fact, some
magnetic activity up to 500 nT was observed in the Canadian
sector by the Canadian Auroral Network for Open Unified
Study (CANOPUS) magnetometer chain (not shown here).
On the other hand, the magnetic activity was rather high on
9 March 1999. TheH component at Tromsø gradually in-
creased with time from negative to positive. A negative vari-
ation of about 300 nT was observed at Longyearbyen dur-
ing 05:00–06:00 UT. There was an enhancement of theAE

index, at about 09:00 UT, which was due to magnetic activ-
ity in the night side since there was no significant activity
at Tromsø and Longyearbyen corresponding to it. The data
of the CANOPUS magnetometer chain exhibited magnetic
activity of about a few hundreds of nT in the Canadian sec-
tor. TheAE index was up to 1000 nT between 13:00 and
14:00 UT.

From the DMSP F11 particle data, cusp-type particle pre-
cipitation was observed just over the Svalbard radar site in
both of the two periods, as shown in Fig. 2. At 10:03–
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Fig. 4. Summary plots of the ionospheric parameters at 115 km
altitude measured by the Tromsø radar and by the Svalbard radar
from 00:00 to 15:00 UT on 22 September 1998. The top panel
shows the electron density obtained from the field-aligned beam at
Tromsø (black) and Longyearbyen (red). The ion and electron tem-
peratures obtained from the field-aligned beam at Tromsø (black)
and Longyearbyen (red) are shown in the second and third panels,
respectively. The derived ion velocities at Tromsø and Longyear-
byen are plotted in the fourth and fifth panels, respectively. The
meridional component (Vm) is shown by the black line, and the
zonal component (Vz) the blue line. The positive values indicate
the northward and eastward components.

10:04 UT on the 22 September 1998, and at 09:10–09:11 UT
on 9 March 1999, the ion precipitations with the ‘normal dis-
persion’ (lower particle energy at higher latitudes) character-
istic of a spectrum of cusp particles (Smith and Lockwood,
1996) were detected. From inspection of the IMF condition
and the DMSP particle data, it is inferred that the Svalbard
radar was located beneath the low latitude boundary of the
polar cap and the cusp region, while the Tromsø radar was in
the auroral oval.

Figure 3 shows the convection electric fields given as func-
tions of UT. On 22 September 1998, the electric field at
Tromsø exhibited small fluctuations before 03:00 UT. Af-
ter that, both of the meridional and zonal components were
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small and less than 5 mV/m. In contrast, the electric field
observed at Longyearbyen sometimes exceeded 30 mV/m
and exhibited significant fluctuations. The direction varied
from southeastward in the morning to northward in the af-
ternoon. When a cusp passed over the Svalbard radar at
about 10:03 UT, the northward electric field increased up to
45 mV/m. On 9 March 1999, the electric field at Tromsø was
less than 10 mV/m during the daytime but it was southward
and up to 50 mV/m before 03:00 UT, and turned northward
and up to 80 mV/m after 11:00 UT. These variations seem to
be consistent with the so-called ‘twin vortex’ system of the
convection electric field. At Longyearbyen, the meridional
component was greater than 30 mV/m most of the time. The
zonal component was also above 20 mV/m during the day-
time. It is interesting to note that the daytime electric field,
in the low latitude boundary of the polar cap and the cusp
was greater and more variable than that in the auroral zone in
these cases.

5 Results

Figure 4 represents the ionospheric parameters such as elec-
tron density, ion and electron temperatures and ion velocity at
115 km altitude measured by the Tromsø radar and the Sval-
bard radar on 22 September 1998. These data, except for the
ion velocity, were obtained from the field-aligned beam. The
ion velocity was derived by combining the three line of sight
observations. The electron density shown in the top panel
exhibited quiet-time daily variations at both of the two lo-
cations. The electron density at Tromsø was slightly higher
than that at Longyearbyen. The ion temperature is depicted
in the second panel. It can be seen that the ion temperature
at Longyearbyen tended to be higher than that at Tromsø; the
difference between them was in the range from 100 to 200 K
between 05:00 UT and 10:00 UT. The electron temperature
shown in the third panel did not vary significantly with time.
The electron temperature at Longyearbyen was higher than
that at Tromsø between 06:30 and 10:30 UT.

The derived meridional and zonal components of the ion
velocity at Tromsø and Longyearbyen are shown in the
fourth and fifth panels, respectively. The positive values in-
dicate northward and eastward velocities. The ion velocity at
Tromsø was less than 200 m/sec and the direction varied ran-
domly with time. At Longyearbyen, however, the velocity
variations were much larger than those at Tromsø. When the
Svalbard radar passed beneath the cusp region around 10:03–
10:04 UT, the electric field was northward and the E-region
ion drift was northwestward.

The ionospheric parameters obtained at 115 km between
00:00 and 15:00 UT on 9 March 1999 are shown in Fig. 5.
The electron density variations were quite different from
quiet-time daily variations. Until 06:00 UT, the electron den-
sity at Tromsø was very high and fluctuated greatly. On the
other hand, the electron density at Longyearbyen was very
low before 06:00 UT. A hump can be seen at both stations
between 05:30 and 08:00 UT. The electron density at Tromsø
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Fig. 5. Same parameters as Fig. 4 except for 9 March 1999.

was much higher than that at Longyearbyen. After 12:53 UT,
the electron density at Tromsø increased to about three times
than that between 08:00 and 12:00 UT. The large enhance-
ment in the ionization in the dusk-side auroral region may
be caused by the large geomagnetic disturbance seen in the
AE index of about 1000 nT (see Fig. 1). In contrast, an en-
hancement of the ionization at Longyearbyen was not ob-
served. The data of ion velocity as well as ion/electron tem-
peratures at Longyearbyen were lacking particularly before
06:00 UT because of the low signal to noise ratio (large un-
certainty) owing to the low electron density. The ion tem-
perature at Longyearbyen increased simultaneously with the
electron density enhancement between 06:00 and 08:00 UT.
The ion temperature at Tromsø, however, did not exhibit any
significant increase. The ion temperature at Longyearbyen
was also higher than that at Tromsø from 07:00 to 12:30 UT.
The electron temperature variations were similar to those
of the ion temperature except for the large enhancements
of the electron temperature at Tromsø around 01:00 UT and
after 13:00 UT. In particular, the electron temperature after
13:00 UT became more than 1000 K.

The ion velocity at Tromsø shows a systematic variation
from southeastward in the morning to northwestward in the
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Fig. 6. Ion temperature parallel to the geomagnetic field between
105 and 115 km at Tromsø (blue) and Longyearbyen (red) from
06:00 to 12:00 UT on 22 September 1998. Error bars depict the
rms random noise errors.

afternoon. As shown in Fig. 3, the convection electric field
at Tromsø was southward in the morning and became north-
ward after 11:00 UT. The ion flow at Tromsø seems to be
consistent with the convection electric field when the effect
of ion-neutral collision on the E-region ion motion is taken
into account. The ion velocity at Longyearbyen was south-
eastward between 06:00 and 08:40 UT, this turned northeast-
ward after 11:00 UT. The electric field during these two peri-
ods was southeastward and eastward, respectively, as shown
in Fig. 3. The northeastward ion flow after 11:00 UT could
be driven by the eastward electric field. It seems, however,
that the southeastward ion flow between 06:00 and 08:40 UT
was not consistent with the observed southeastward electric
field.

The ion and neutral temperatures and related energy
budget between 06:00 and 12:00 UT will be discussed in
Sect. 5.1. One of the reasons why the discussion has been
restricted to only the daytime is the lack of nighttime data
at Longyearbyen. Another reason for this is to avoid the
data during the period of high geomagnetic activity after
12:00 UT on 9 March 1999.

Table 2. Weighting function

Number of Points Weight
−2 −3
−1 12
0 17
1 12
2 −3

5.1 Ion temperature and ion energy budget

Figure 6 shows the ion temperature in the altitude range from
105 to 115 km plotted as a function of UT on 22 September
1998. Associated errors (rms random noise errors) with in-
dividual data values are also shown. The errors were mostly
less than 50 K. The ion temperature at Tromsø was almost
constant with the fluctuations of less than 50 K at and be-
low 112 km. The average temperature was about 200 K at
105 and 108 km, and 250 K at 112 km. At the altitude of
115 km, it was about 350 K. The magnitude of the variations
was slightly greater than that in the lower region. The ion
temperature at Longyearbyen was higher than that at Tromsø
most of the time. The temperature difference between the
two locations was about 100–200 K.

The ion temperature on 9 March 1999 is shown in Fig. 7.
The mean values of the ion temperature at Tromsø were sim-
ilar to those on the 22 September 1998, but the variations
were rather irregular. In spite of data gaps, it is observed that
the ion temperature at Longyearbyen was higher than that
at Tromsø from 07:10 to 11:20 UT. The temperature differ-
ence was much greater than 100 K and sometimes exceeded
300 K. The maximum temperature difference at 115 km was
about 500 K at 07:24 UT.

In order to examine the ion energy budget, the ion fric-
tional heating given in Eq. (3) was derived from the measured
ion velocity and the neutral wind velocity calculated by us-
ing Eq. (6). It should be noted that the ion velocity obtained
from the EISCAT CP-2 data sometimes scatters significantly
(Nozawa and Brekke, 2000). To reduce the rms random-
noise errors involved in measuring the ion velocity, the data
of the ion velocity were smoothed with five point running
averages (30 min for the Tromsø radar data and 40 min for
the Svalbard radar data) by using a weighting function of the
Savitzky-Golay method given in Table 2. Another reason for
the smoothing is the fact that the time constant for the neu-
trals to approach the ion velocity is of the order of magnitude
104 s in the E-region (Brekke, 1997) and the neutrals can-
not respond quickly to electromagnetic variations. Since the
steady-state ion energy equation has been used to derive the
neutral temperature in the present analysis, the time constant
of the neutrals cannot be estimated in a consistent manner.
In running averaging, ion velocity data having rms random-
noise error greater than 500 m/s were excluded.

Figure 8 shows the magnitude of the ion frictional heating
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Fig. 7. Same as Fig. 6 except for 9 March 1999.

at an altitude of 115 km from 06:00 to 12:00 UT in the case of
β‖ = 0.54. As already mentioned in Sect. 3, the ion tempera-
ture at Tromsø would be isotropic since the electric field was
very small most of the time. The ion frictional heating as-
suming the isotropic ion temperature (β‖ = 2/3), was about
20% greater than in the anisotropic case. The difference be-
tween them, however, was negligibly small because of the
small electric field and resultant small ion frictional heating.
For the event on the 22 September 1998, the magnitude of
the frictional heating at Tromsø was negligibly small, less
than 5 K, since the electric field was small during this partic-
ular period, while at Longyearbyen it was larger than that at
Tromsø; more than 20 K from 09:00 to 09:52 UT and from
10:32 to 11:20 UT. On 9 March 1999, the magnitude of the
ion frictional heating at Tromsø was less than 10 K before
08:30 UT, and then increased to be 20 K by 10:06 UT. This
became large after 11:00 UT, being about 90 K at 12:00 UT.
At Longyearbyen, ion frictional heating of about∼ 200 K at
06:06 UT and of∼ 64 K at 09:18 UT was derived. Owing to
the large eastward ion flow of about 400 m/s at 11:02 UT (see
Fig. 5), the ion frictional heating was enhanced to be 110 K.
In contrast to the Tromsø case, the ion frictional heating at
Longyearbyen decreased after 11:00 UT. The time variations
of the ion frictional heating at the two stations generally cor-
responded well with those of the electric field at each station.

The present results imply that the enhancement of the elec-
tric field and resultant ion frictional heating in the afternoon
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Fig. 8. Ion frictional heatingβ‖mn(V i − V n)2/(2κB ) in Kelvin
units at 115 km between 06:00 and 12:00 UT at Tromsø and
Longyearbyen on 22 September 1998 (the upper two panels) and
9 March 1999 (the lower two panels). The ion and neutral veloci-
ties used to estimate the ion frictional heating were smoothed with
five point running averages.

sector occurred mainly in the auroral region but not in the po-
lar cap and/or at the low latitude boundary of the polar cap.
This seems to be consistent with the statistics by Davies et
al. (1997) showing that significant heating in the auroral F-
region is observed primarily during night-time and not during
daytime. The significant dayside heating in the E-region at
Longyearbyen was quite distinctive.

It is important to examine whether or not the heat ex-
change between ions and electrons can be negligible with
respect to the ion energy budget. As discussed in Sect. 3,
electron heating by the Farley-Buneman waves occurs when
the electric field strength is greater than 20 mV/m (Williams
et al., 1992; Davies and Robinson, 1997). Figure 9 shows
the ion and electron temperatures at Longyearbyen. There
are some occasions when the electron temperature was
higher than the ion temperature at 108 and 112 km between
06:00 UT and 08:00 UT in both of the two periods. In ad-
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Fig. 9. Electron (black) and ion (red) temperatures at Longyearbyen
obtained by the field-aligned beams between 105 and 115 km from
06:00 to 12:00 UT on 22 September 1998 (left) and 9 March 1999
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dition, there was some other electron heating between 09:00
and 11:30 UT on March 09, 1999. The electron temperature
at 108 km reached 950 K at 07:24 UT, 670 K higher than the
ion temperature. It is interesting to note that in most of the
periods, except for 08:00–09:30 UT, the electron temperature
was lower than the ion temperature at the altitudes of 105 and
115 km. The contribution of the electron heating on the ion
energy budget was calculated by the third term on the right-
hand side of Eq. (2), assumingmn = mi , by utilizing the
measured ion and electron temperatures. The ion-electron
collision frequencyνie appearing in this term was computed
from the formula forνei given by Kelly (1989) and Brekke
(1997) using the relationnimiνie = nemeνei (Shunk and
Nagy, 2000). The measured electron density and temperature
were used to compute the ion-electron collision frequency as-
sumingni = ne. The maximum contribution of the electron
heating to the ion energy budget was of the order of magni-
tude of 10−3 K. Therefore, it is concluded that the neglect of
the electron heating in the Eq. (2) does not cause a significant
overestimation of the neutral temperature for the present data
set.

5.2 Neutral temperature and neutral energy budget

Figure 10 shows the neutral temperature from 06:00 to
12:00 UT on 22 September 1998 derived from the ion tem-
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Fig. 10. Derived neutral temperatures between 105 and 115 km at
Tromsø (blue) and Longyearbyen (red) from 06:00 to 12:00 UT on
22 September 1998.

perature and ion frictional heating using Eq. (3). It should
be noted here that the estimated neutral temperature might
include the effects of heat transport, time variations and vis-
cous heating represented by the terms on the left hand side
of Eq. (1) when they were not negligibly small. Accord-
ing to the running averaged ion and neutral velocities, the
ion temperature was also smoothed with a five point run-
ning average in deriving the neutral temperature. Here, the
data of ion temperature having the rms random-noise error
greater than 100 K were excluded. The average tempera-
tures at Tromsø were 200 K at 105 and 108 km, 250 K at
112 km and 350 K at 115 km. The neutral temperature at
Longyearbyen was generally higher than that at Tromsø at
all altitudes. The magnitude of the temperature difference
between the two locations was about 100 K, except for the
times around 08:30 UT and 10:50 UT when there was no sig-
nificant difference. At 115 km altitude, the neutral temper-
ature at Tromsø exhibited wavelike oscillations with a pe-
riod of about one hour. Except for these oscillations, it is in-
ferred that the neutral temperature at Tromsø was lower than
that at Longyearbyen. Unfortunately, the Svalbard radar data
were not available from 08:20 to 08:40 UT and from 10:00
to 10:30 UT; thus, it is not obvious whether the neutral tem-
perature at Longyearbyen showed wavelike oscillations sim-
ilar to those at Tromsø. Therefore, the relationship between
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Fig. 11. same as Fig. 10 except for 9 March 1999.

the neutral temperatures at Tromsø and Longyearbyen men-
tioned above may not be conclusive at 115 km altitude.

Figure 11 represents the neutral temperatures from 06:00
to 12:00 UT on 9 March 1999. The neutral temperature at
Tromsø exhibited irregular variations. The averaged temper-
ature was 200 K at 105 and 108 km, 250 K at 112 km and
300 K at 115 km. Since the ion velocity at Longyearbyen
was not always available, particularly in the lower altitude
region, the neutral temperature could not be derived on such
occasions. In spite of the large data gaps, it was found that
the estimated neutral temperature at Longyearbyen was sig-
nificantly higher than that at Tromsø around 07:00 UT and af-
ter 09:20 UT. The temperature difference at 115 km reached
320 K at 09:26 UT. These results seem to be consistent with
previous observations of the F-region temperature maximum
over the polar cap and at the cusp (Hays et al., 1984; McCor-
mac et al., 1988). The present results also show the higher
temperature in the dayside polar cap boundary and the cusp
than the auroral region even in the E-region.

The high temperature over the F-region polar cap was
speculated to be a direct consequence of the Joule and soft
particle heating in the polar cusp and thermal advection by
the polar cap winds (Hays et al., 1984; McCormac et al.,
1988). It is not obvious whether the physical mechanisms
responsible for the hot polar cap and cusp in the E-region are
the same as those in the F-region. However, it is quite reason-
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Fig. 12.Joule heating rate at 115 km altitude at Longyearbyen from
06:00 to 12:00 UT on 22 September 1998 (top) and 9 March 1999
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able to infer Joule heating as one of the major heat sources.
For a comparison between the neutral temperature increase
and the Joule heating rate at Longyearbyen, the Joule heating
rate was evaluated by using Eq. (5). Figure 12 exhibits the
Joule heating rate between 06:00 and 12:00 UT at 115 km.
The Joule heating rate on 22 September 1998 lay in the range
between 10−6 and 10−3 K/sec. On 9 March 1999, it was
greater by one order of magnitude than that on 22 September
1998. In both periods, however, the temperature increase of
more than 100 K can hardly be explained from the estimated
Joule heating rate. The Joule heating, estimated locally, was
insufficient to the cause of the temperature increase. It is still
encouraging to find that the time variations of the Joule heat-
ing rate were not much different from those of the neutral
temperature.

It would be rather surprising to see the neutral tempera-
ture above 500 K in the altitude region of about 115 km. If
the neutral energy balance cannot be attained locally and the
effect of heat transport by the polar cap neutral winds is im-
portant as discussed by Hays et al. (1984) and McCormac et
al. (1988), we cannot neglect the effect of the heat transport
depicted in the terms on the left-hand side of Eq. (5). In such
a case, the neutral temperature estimated in this analysis is
considered to be the sum of ‘real’ neutral temperature and
contribution of the heat transport. Another problem concern-
ing the data analysis is the assumption of spatial and temporal
uniformity of the ion velocity over the area of four scattering
volumes and the cycle time, which is inherent to the analysis
of the CP-2 data. The effect of solar heating was not consid-
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ered in speculating the reason why the neutral temperature at
Longyearbyen was higher than that at Tromsø, because solar
heating was stronger at lower latitudes and could not cause
the higher temperature at higher latitudes.

6 Summary and conclusions

Two sets of simultaneous EISCAT CP-2 measurements, be-
tween 00:00 and 15:00 UT on 22 September 1998 and 9
March 1999 by the Tromsø radar and the Svalbard radar,
have been used to investigate the distributions of the ion and
neutral temperatures in the E-region in relation to the IMF
condition and the convection electric field. From inspec-
tion of the IMF condition and the DMSP particle data, it
is inferred that Longyearbyen was located beneath the low
latitude boundary of the polar cap and the cusp region but
Tromsø in the auroral oval.

The neutral temperature during the daytime (between
06:00 and 12:00 UT) was estimated from the measured ion
temperature by using the steady-state ion energy equation
under the assumption that the effects of heat transfer and vis-
cous heating were negligibly small. The results are summa-
rized as follows:

1. The electric field observed at Longyearbyen was greater
and more variable than that at Tromsø during the day-
time.

2. The parallel ion temperatureTi‖ at Longyearbyen was
higher than that at Tromsø during the daytime. The dif-
ference between them was about 100–200 K but some-
times exceeded 300 K.

3. Ion frictional heating at Tromsø was small during the
daytime but increased largely in the dusk sector when
the magnetic activity was high. The ion frictional heat-
ing at Longyearbyen was greater than that at Tromsø
during the daytime but did not increase in the dusk sec-
tor even during the period of high magnetic activity.

4. Electron heating was observed at 108 and 112 km, but
not at 105 and 115 km. The contribution of the electron
heating to the ion energy budget, however, was negligi-
bly small.

5. Similar to the ion temperature, the estimated neutral
temperature at Longyearbyen was also higher than that
at Tromsø by more than 100 K.

6. The estimated Joule heating rate at Longyearbyen lay in
the range between 10−6 and 10−2 K/sec, which seemed
to be insufficient to explain the enhancement in the es-
timated neutral temperature.

Two possibilities can be suggested: the neutral tempera-
ture was high in the low latitude boundary of the polar cap
and the cusp, or the heat transport by the polar cap neutral
winds toward the dayside sector was significantly large.
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