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Abstract. We present EISCAT Svalbard Radar and DMSP
observations of a double cusp during an interval of predom-
inantly northward IMF on 26 November 2000. In the cusp
region, the ESR dish, pointing northward, recorded sun-
ward ionospheric flow at high latitudes (above 82◦ GL), in-
dicating reconnection occuring in the magnetospheric lobe.
Meanwhile, the same dish also recorded bursts of poleward
flow, indicative of bursty reconnection at the subsolar mag-
netopause. Within this time interval, the DMSP F13 satel-
lite passed in the close vicinity of the Svalbard archipelago.
The particle measurement on board exhibited a double cusp
structure in which two oppositely oriented ion dispersions
are recorded. We interpret this set of data in terms of si-
multaneous merging at low- and high-latitude magnetopause.
We discuss the conditions for which such simultaneous high-
latitude and low-latitude reconnection can be anticipated. We
also discuss the consequences of the presence of two X-lines
in the dayside polar ionosphere.

Key words. Magnetospheric physics (solar wind-magneto-
sphere interactions) – Ionosphere (polar ionosphere; plasma
convection)

1 Introduction

It is nowadays well accepted that solar wind particles manage
to go through the Earth’s magnetopause, thanks to the recon-
nection process. Interplanetary Magnetic Field (IMF) lines
merge with field lines of the Earth’s magnetosphere. The
particles subsequently penetrate into the magnetosphere, and
some of them even precipitate into the high-latitude dayside
ionosphere through the cusp region. The location of the re-
connection site at the magnetopause is highly dependent on
the external IMF conditions. The location of the cusp region
and therefore its ionospheric footprint, in turn, depend on the
location of the reconnection site. The dynamics of the cusp’s
open field lines is rather complex, and for simplicity, most
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published studies deal with the cusp under steady IMF con-
ditions, i.e. either northward or southward IMF.

For southward IMF, the literature abounds with case stud-
ies of the ionospheric response to low-latitude reconnection
at the sub-solar magnetopause. The sporadic nature of the
reconnection process at the magnetopause and its response
in the ionosphere are very well documented. Pulsed recon-
nection at the magnetopause means pulsed precipitation of
low energy electrons in the dayside polar ionosphere, produc-
ing quasi-periodic electron density and temperature enhance-
ments in the F-region. Besides, the electric field is usually
very high in the cusp region. The ionospheric plasma convec-
tion is strongly poleward there, often reaching several km/s.
Due to this fast poleward flow, the manifestations of pulsed
reconnection in the polar dayside ionosphere are pulsed flow
channels, as observed by HF radars, poleward moving auro-
ral forms, as observed by optical instruments (e.g. Thorolf-
sson et al., 2000) and poleward moving plasma of enhanced
electron density and temperature, as observed by incoherent
scatter radars (e.g. Lockwood et al., 2001).

When the IMF points northward, things are somewhat dif-
ferent. The antiparallel criterion required between the IMF
and the Earth’s magnetic field lines is nominally met only at
the high-latitude magnetopause, poleward of the cusp. The
auroral display is then also sensitive to the pulsing nature of
the reconnection process in the lobe (Sandholt et al., 1998c,
2001). However, recent observations of the northward IMF
cusp by incoherent scatter radars showed no periodic or even
quasi-periodic variations in the plasma parameters (Pitout et
al., 2001). This is probably due to the weak sunward plasma
convection velocity associated with lobe reconnection.

Even if theZ-component of the IMF does play a key role
in the reconnection process, theY -component should not be
neglected as it is too often. In fact, theY -component apart
from being responsible for the symmetry or asymmetry of
the convection pattern in the ionosphere, plays an important
role in the reconnection process itself especially when theZ-
component is weak. A strong IMFBy is thought to allow
for reconnection at the far dusk or dawn sides of the magne-
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topause, even if the conditions are a priori not favorable.
Considering the classification of auroral forms by Sand-

holt et al. (1998a), the so-called type 1 aurora is associated
with subsolar reconnection. Type 1 auroras are observed at
typical cusp latitude for southward IMF (around 75◦ MLAT).
On the other hand, type 2 auroras, due to lobe merging, are
located at higher latitudes and are consequently observed
typically for northward IMF. However, cases of simultane-
ous observations of type 1 and type 2 auroral forms have been
reported (Sandholt et al., 1998b, 2001). These so-called au-
roral bifurcations have been observed by using all-sky cam-
eras. Their wide field of view makes it possible to observe
the whole dayside aurora display and dynamics over a large
region of the ionosphere. Those observations suggest that the
reconnection process may take place simultaneously in some
particular circumstances at the dayside magnetopause and in
the magnetospheric lobe.

It was reported by Russell et al. (2000a, b) that reconnec-
tion could actually take place at the subsolar magnetopause
even for northward IMF, when the solar wind dynamic pres-
sure is high. It is thought that interplanetary magnetic field
lines and the Earth’s magnetopshere magnetic field lines may
then merge even without strict antiparallel conditions.

Very recently, Wing et al. (2001) have reported obser-
vations of double cusp crossings by DMSP satellites and
have proposed a model explaining those observations in term
of low- and high-latitude merging occurring simultaneously.
The model predicts the existence of two cusps, so to speak,
one at high latitude and another at a lower latitude for a
weak negativeZ-component of the IMF and a strongY -
component. Within the higher latitude cusp, originating from
the high-latitude magnetosheath, theE × B drift is thought
to be poleward and strongly azimuthal, resulting in an ion
dispersion that looks like a typical southward IMF disper-
sion. On the other hand, the lower latitude cusp is thought to
be located in a region of weak azimuthalE × B drift. The
lower latitude cusp appears, therefore, dispersionless.

To authors’ knowledge, not a single case of double cusp
observed by incoherent scatter radar has ever been reported.
The EISCAT radar facilities available on Svalbard makes
it possible to observe the polar ionosphere by pointing the
steerable dish northward at low elevation. We present here
such a case of double cusp observed by EISCAT Svalbard
Radar.

2 Observations

2.1 Interplanetary conditions

The ACE spacecraft was located atXGSE = 225RE away
from the Earth in the upstream solar wind. Considering an
average solar wind speed of 460 km/s throughout the period
of interest, a time delay between the measurements at ACE
and the response in the ionosphere of about 57 min is ex-
pected. This time lag can be confirmed thanks to the pressure
pulse recorded at 07:03 UT at ACE and the IMAGE mag-

netograms showing a strong response at 08:00 UT. Figure 1
shows the IMF recorded by ACE spacecraft for the inter-
val 06:00–09:00 UT on 26 November 2000. Data have been
lagged by the 57 min. The first three panels, from top to bot-
tom, show, respectively, theX-, Y - and Z-components of
the IMF in the GSM coordinate system, while the last panel
shows the clock angleθ defined as follow:θ = atan(|By |/Bz)
if Bz > 0 or θ = π-atan(|By |/Bz) if Bz <0.

Before 07:10 UT, the IMF points mainly southward and
strongly dawnward. Between 07:10 and 08:00 UT, which is
the time period we will focus on, the IMF is predominantly
northward though with three southward incursions at 07:25,
07:37 and 07:51 UT. At 08:00 UT, a pressure pulse reaches
the Earth. The associated IMF signature is obvious. TheZ-
component flips southward, theY -component duskward and
theX-component anti-sunward.

2.2 EISCAT Svalbard radars

The EISCAT Scientific Association has among others a two-
dish incoherent scatter radar system near Longyearbyen on
Svalbard. One dish is fixed, pointing along the local mag-
netic field line, and the other is fully steerable towards any
direction. The ESR data showed in this study are post-
integrated with a time resolution of 128 s.

Let us first focus on the steerable antenna. On 26 Novem-
ber 2000, it was pointing towards geographic north (azimuth
0◦) at low elevation (30◦). Figure 2 displays the data from
the two radars: the steerable 32 m-dish (Fig. 2a) and the
fixed 42 m-dish (Fig. 2b) with, from top to bottom, electron
density, electron temperature, ion temperature and ion veloc-
ity, along the line of sight (positive velocities away from the
radar). A quick look at the velocity data (bottom panel of the
Fig. 2a) allows us to separate two regions of interest within
the time period 07:10–08:00 UT: above 82◦ GL, where the
plasma flow is clearly sunward and below 82◦ Geographic
Latitude (GL), where the plasma flow exhibits strong anti-
sunward flow channels. We will first deal with those two
regions separately, since they exhibit a priori completely dif-
ferent behavior and dynamics.

At high latitudes, i.e. above 82◦ GL, the plasma flow has
clearly a sunward component between 07:10 and 08:05 UT.
The plasma velocity reaches at times 500 m/s, which is quite
large for a reverse convection velocity. The density mea-
surements indicate a density of 3· 1011 cm−3 between 82◦

and 84◦ GL. The electron temperature ranging from about
1500 up to 2000 K, is slightly higher than in the close vicin-
ity. Knowing that the dish points at 30◦ of elevation, these
latitudes correspond to actual altitudes of 200–300 km, it is,
therefore, the F-region which is observed in this range of lat-
itudes. This clearly suggests that low energy electrons pre-
cipitate in this region of sunward plasma flow. No structures
are observed either in the electron density or temperature.

At lower latitudes, below 82◦ GL, the panels of the same
Fig. 2a show a totally different view. The electron density
is dramatically lower, the electron temperature appears more
structured, as well as the ion temperature, and most obvious
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Fig. 1. Interplanetary Magnetic Field in GSM coordinates measured by ACE. Data lagged by 57 min. From top to bottom,X-, Y -, Z-
component and clock angle.

of all, the plasma velocity is anti-sunward and highly vari-
able.

Three flow channels are identified (black lines in Fig. 2a).
They are clearly associated with ion heating due to frictional
heating with the neutrals driven by high electric field. The
measured component of the plasma velocity within the flow
channels reaches 1000 m/s. In terms of convection electric
field, it corresponds to about 50 mV/m. Within those struc-
tures, the ionospheric plasma experiences electron heating
and less obvious electron density enhancement. It is not easy
to time those transients since they are moving. Neverthe-
less, we can try to time those at a common space reference,
namely the latitude of the radars. By continuing the struc-

tures down to 78◦ of latitude (black lines in Fig. 2a), we
obtain a useable timing. The two first flow channels must
have passed over Longyearbyen at 07:05 and 07:25 UT, re-
spectively. It is, however, less evident that the third actually
comes from such a low latitude.

The second ESR dish records the ionospheric plasma pa-
rameters along the field line. Data are shown in Fig. 2b from
06:00 through to 09:00 UT as a function of time and altitude.
The electron density and temperature panels exhibit the usual
characteristics of the dayside polar ionosphere. Electron den-
sity is high and well structured in the F-region, whereas the
E-region looks empty. This is due to the low energy of the
precipitating electrons. The reader should note that the low
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Fig. 2. Plasma parameters measured by the northward pointing ESR dish and the field-aligned dish on 26 November 2000. From top to
bottom:Ne, electron density,Te, electron temperature,Ti , ion temperature, and line-of-sight velocity,Vi (positive away from the radar) as a
function of time and geographic latitude(a) or altitude(b).

energy electrons are effective in (1) heating the electron pop-
ulation in the ionosphere and as a consequence (2) in trigger-
ing ion outflow.

Let us focus on the third panel of Fig. 2b, which shows
ion temperature, since the latter is a good indicator of elec-
tric field. There are three ion temperature/electric field en-
hancements: 07:05, 07:25, 08:00 UT. The first two struc-
tures clearly correspond to two intervals of southward IMF.

The third and last one is associated with the pressure
pulse/southward turning of 08:00 UT.

2.3 IMAGE magnetometers

IMAGE (International Monitor for Auroral Geomagnetic Ef-
fects) consists of 27 magnetometer stations covering geo-
graphic latitudes from 58◦ to 79◦ degrees across Scandinavia
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Fig. 3. Stack plot of theX- andY -components of the ground magnetic field recorded at the following IMAGE stations: NyÅlesund (NAL),
Longyearbyen (LYR), Hornsund (HOR), Hopen Island (HOP) and Bear Island (BJN).

(Viljanen and Ḧakkinen, 1997). We use here the five north-
ernmost stations of the chain. Those five stations cover a
small region between 74.50 and 78.92◦ GL north and espe-
cially south of the ESR. The coverage is, therefore, com-
plete, with the steerable ESR dish observing northward, the

fixed ESR dish observing field-aligned and IMAGE record-
ing south of the ESR. Also, the station in NyÅlesund (NAL)
fills the gap that exists between the coverages of the two
radars. TheX- and Y -geographical components (respec-
tively north and east) of the ground magnetic field recorded



1316 F. Pitout et al.: ESR and DMSP observations

Fig. 4. Map over the northern polar cap showing the F13 footprint
between 07:20 and 07:27 UT, as well as the field of view of the 32-
meter ESR dish.

by IMAGE are shown in Fig. 3.
Between 07:00 and 08:00 UT, theX-component of the

ground magnetic field recorded at NẙAlesund (NAL) and
Longyearbyen (LYR) is predominantly negative. In terms
of equivalent ionospheric Hall current, this corresponds to
a westward current, which, in turn, corresponds to an east-
ward plasma flow. This is quite consistent with the negative
Y -component of the IMF.

A closer look reveals enhancements of theX- and Y -
components around 07:05 and 07:25 UT (marked by red ar-
rows on Fig. 4), which means that the plasma flow, in these
time intervals, became accelerated northward and eastward.
This is fully consistent with the ion heating events recorded
by the field-aligned ESR antenna. There is no clear evidence
of northward propagation of those Hall current intensifica-
tions. This is very likely due to the fact that the plasma flow is
northward, but most of all strongly eastward (IMFBy < 0).
Besides, LYR and NAL stations are rather close to each other
in terms of latitudinal separation.

2.4 DMSP-F13 spacecraft overpass

On 26 November 2001, the F13 satellite flew slightly east of
Svalbard from north to south (Fig. 4) and crossed the cusp
region at around 07:24 UT On board, the SSJ/4 instrument
records the ions’ and electrons’ energy spectra. The data be-
tween 07:20 and 07:27 UT are shown on Fig. 5. Plotted in
the figure are, from top to bottom, (1) the integrated number
flux of precipitating electron and ions, (2) the average en-
ergy of electrons and ions, (3) the differential energy flux of
electrons, (4) the differential energy flux of ions, and (5) the

horizontal component of the cross track convective drift.

The first three upper panels allow us to determine accu-
rately the open/closed field lines boundary. At 07:25:20 UT,
we have simultaneously a dropout in magnetosheath energy
electrons and the appearance of high-energy electrons pre-
cisely at 07:25:20 UT. This means that F13 flies through
open field lines before 07:25:20 UT. A first glance at the
third panel, the ion spectrogram, indicates that a region
of magnetosheath-like ion population is crossed between
07:22:40 and 07:25:20 UT. In this same region, low energy
electron precipitate, as we have just seen. This region is
thought to be the cusp region, although there are several un-
usual features. Electron average energies are a bit higher than
typical of the cusp, although this may be partly due to win-
ter conditions. Cusp average energies are higher but fluxes
are lower in winter (Newell et al., 1988). Also typically, the
high-energy ions drop out in the cusp, but that does not hap-
pen here. Despite the somewhat higher electron average en-
ergy and the high-energy ions, the ion spectra are definitely
cusp/magnetosheath, peaking at about 108 eV/cm2/s/str at
around 1 keV.

The F13 trajectory makes the interpretation of the shape of
ion spectra in the cusp difficult. Even if geographically it flies
clearly from north to south, in terms of magnetic latitudes,
this Southward motion is not so clear. However, there are two
different regions of cusp-like precipitating particles. The first
cusp crossing would be between 07:22:40 and 07:23:50 UT
and the second between 07:23:50 and 07:25:20 UT, approx-
imately. Note that the higher latitude cusp is crossed at vir-
tually constant MLAT (75.9 most of the way through, and
76.0 at the end). This constant latitude could account for the
nonexistent dispersion. Likewise, when moving though the
lower latitude cusp, the latitude does change, so the disper-
sion is easier to see.

Nonetheless, a very interesting feature is that there is re-
verse dispersion at the poleward edge of the higher latitude
cusp, and it is hard to see how actual reverse dispersion could
occur except through high-latitude merging. Figure 5 also
shows the convection velocity parallel (positive along the
track and in the direction of travel) and perpendicular (posi-
tive to the left when facing forward in the direction of travel)
to the spacecraft track. Knowing the orbit, the velocity across
the track is, in fact, the sunward/anti-sunward component of
the convection. This is true as long as the spacecraft travels
at more or less constant magnetic latitude. The convection
is actually sunward (positive cross-track velocity) when the
reversed dispersion is recorded. However, the cross track ve-
locity is no longer the sunward/anti-sunward velocity later
on. The positive cross track velocity observed, together with
the second ion dispersion, is not necessarily a sunward flow,
but rather a strong eastward flow.

The velocity recorded along the path is in the opposite di-
rection of the actual satellite motion and has a much higher
typical value than the cross track velocity. This obviously
means that the plasma flow is predominantly eastward, which
is consistent with the dawnward IMF.
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Fig. 5. Ion and electron data from SSJ/4 instrument on board DMSP-F13 spacecraft.

3 Interpretation

From the radars’ point of view, it looks like the structures
recorded by the field-aligned dish are the same observed later
on by the steerable dish, at least for two of them. This is not
a new feature. It has been reported recently that structures of
enhanced electron density and temperature associated with
pulsed reconnection may be observed by both ESR dishes,
as they propagate poleward through the successive fields of
view of the radars (Lockwood et al., 2001). Unlike the day
described by Lockwood et al. (2001), on 26 November 2000,
the IMF is far from being steadily southward. In fact, it is

predominantly northward with some southward flips. The re-
connection is, therefore, expected to be more sporadic rather
than pulsed with a fixed period. The most surprising feature
here is that the sunward flow does not decay at all during
those events. Also, to complete the story, the two first flow
channels at 07:05 and 07:25 UT are very well consistent in
time and direction with the Hall current intensifications ob-
served by IMAGE magnetometers. This indicates that the
X-line is actually south of Longyearbyen and the events ob-
served by the two ESR dishes are indeed the same.

One may expect lobe reconnection for northward IMF,
even if in our case the conditions are not particularly favor-
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Fig. 6. Schematic of the dayside polar ionosphere around 07:25 UT showing the plasma flow in black, the EISCAT Svalbard Radars in red,
the DMSP-F13 projected orbit in blue as well as the two cusp regions in green.

able (winter hemisphere). Nonetheless, the northward point-
ing ESR dish does observe sunward plasma flow in the cusp,
which is characteristic for northward IMF (Crooker, 1992;
Milan et al., 2000; Pitout et al., 2001). However, the same
dish also observes what look like transient northward flow
bursts. This is what we usually observe for southward IMF,
when pulse reconnection takes place at the dayside magne-
topause. Besides, the structures seen by the steerable an-
tenna appear to be the same as those observed earlier and at
lower latitude by the field-aligned fixed dish. These radar
observations are, therefore, consistent with the idea that re-
connection takes place at both low-altitude and high-latitude
magnetopause.

Optical data coming from Longyearbyen station are avail-
able for this day. Unfortunately, due to cloudy condi-
tions, the quality of those data is not good enough to be
shown here. Nevertheless, the Meridian Scanning Photome-
ter (MSP) seems to have recorded two distinct regions of
cusp auroral activity (red line at 630 nm). This supports our
hypothesis.

Finally, although the F13 spacecraft does not pass exactly
over the ESR, particle data from the SSJ/4 instruments also
supports and confirms our simultaneous low-/high-latitude
reconnection scenario. The “reverse” ion dispersion, to-
gether with the sunward convection recorded at high-latitude
(82◦ GL), can hardly be explained in some other way than
a reconnection site located in the lobe of the magnetosphere,
poleward of the cusp. Luckily, the DMSP pass occurs around
07:25 UT, precisely when a flow channel is observed at ESR
and the associated Hall current intensification is recorded at
the LYR IMAGE station. These observations are very con-
sistent with each other. The very high latitude undergoes a
lobe reconnection driven sunward convection, with precip-
itation of solar wind particles captured in the high-latitude
magnetosheath. On the other hand, at lower latitudes, be-

low 82◦ GL, the ionosphere is subject to poleward moving
transients due to reconnection at the low-latitude sub-solar
magnetopause.

4 Discussion

Even though it is clear in this case that there exist two recon-
nection sites at the magnetopause, we would like to discuss
here the conditions leading to this. Actually, if one closely
examines the ACE data, the poleward moving transients ob-
served by ESR correspond to somewhat different IMF con-
ditions. Even allowing for an error in the time lag, it ap-
pears that the first flow channel occurs while the IMF still
points southward but mainly dawnward. These are the typ-
ical conditions described by Wing et al. (2001) for having
a double cusp. We do in fact have a double cusp here, since
the high-latitude flow is already strongly sunward at this time
(∼ 07:08 UT).

When the second flow channel is recorded at ESR and IM-
AGE, the IMF seems to be strongly southward for a few min-
utes. It is not surprising to obtain reconnection at the subsolar
magnetopause here, but the sunward flow in the very high-
latitude ionosphere remains. The southward excursion of the
IMF is very likely not long enough to switch off reconnection
in the lobe and reverse the convection.

The third flow channel is recorded neither by the field-
aligned ESR dish nor by IMAGE station in Longyearbyen
(LYR). This would suggest that the open/closed field line
boundary (X-line) is north of Longyearbyen. This is con-
firmed somewhat if one draws an oblique line in Fig. 2, such
as was done for the two first channels. This line would inter-
sect the Longyearbyen latitude (78.20◦ GL) before the sec-
ond flow channel, which cannot be correct. It should be noted
that IMAGE data records a very small deviation in theX-
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component that could possibly be due to the edge of the Hall
current intensification associated with this third flow chan-
nel. On the other hand, theY -component does not show any
significant signature.

A largeY -component of the IMF is usually considered ca-
pable of producing reconnection at two different locations
on the magnetopause. We do have a relatively large IMF
By compared toBz throughout the hour studied here. The
combination of the two gives a stable clock angle at around
50◦. Having said that, it is difficult to assert in our case that
such a value is high enough to trigger a double cusp. It does
seem that the short southward incursions of the IMF are a
more probable explanation for having two reconnection sites
simultaneously.

Theoretical studies of ionospheric convection in the polar
cap for several IMF orientations were performed by Reiff and
Burch (1985). This study shows that in our case, i.e. north-
ward and dawnward IMF, at least one lobe cell is expected to
develop in the afternoon sector. This implies that the plasma
must be flowing eastward in the low-latitude cusp and sun-
ward in the high-latitude cusp. This is exactly what we have
seen in our data. We have to emphasize two points, though.
The fact that the steerable ESR dish was pointing towards the
geographic pole (24◦ east of magnetic pole) allows for the
observation of the modulation of the mainly eastward flow in
the low-latitude cusp and, therefore, the flow channels. Sec-
ond, even if the lobe cell is supposed to be located or rather
centered in the afternoon sector, the steerable ESR antenna
does observe sunward flow in the morning sector. Even if the
antenna points towards the east, it is clear here that the lobe
cell’s westernmost edge (sunward flow region) is observed
near noon in the morning sector (around 11:00 MLT).

The possibility of having two regions of reconnected field
lines was already suggested by Weiss et al. (1995). This im-
plies a complex plasma flow and FAC system in the cusp
region. Such a configuration has been sketched in details
by Sandholt et al. (1998b) for a northward and strongly
duskward IMF. The larger lobe cell is then located in the
morning sector and the plasma flow in the low-latitude cusp
region is westward. On 26 November 2000, the IMF points
dawnward (By < 0) most of the time. Therefore, the sketch
by Sandholt et al. (1998b) has to be inverted, with the biggest
lobe cell being in the afternoon sector and the plasma flow-
ing eastward in the low-latitude cusp region. In both cases,
the plasma flows southward (anti-sunward) within the high-
latitude cusp. Figure 6 summarizes what we have presented
in this paper. It shows the plasma flows, as expected, and
as it actually fits our observations, as well as the ESR field
of view, the DMSP-F13 track and the two regions of magne-
tosheath particle precipitations.

5 Conclusion

We have reported an observation of a unique case of the iono-
spheric response to reconnection taking place simultaneously
at the dayside low-altitude magnetopause and high-latitude

magnetospheric lobe. Our interpretation relies on both ESR
data, which shows strong sunward and anti-sunward flows
along the line-of-sight (northward pointing dish) and on a
fortunate DMSP overflight of the Svalbard surroundings.
The data sets are fully consistent with each other. We only
regret that no optical data were good enough to be used prop-
erly in this study. In particular, an all-sky camera would have
been valuable in order to have the zonal dynamics of this
event.

The predominantly northward IMF conditions were obvi-
ously favorable for having lobe reconnection. On the other
hand, the short southward excursions of the IMF were seen to
produce flow channels, thanks to low-latitude reconnection.
Even during these events, reconnection in the high-latitude
lobe did not stop.

We have demonstrated in this study that the observed flow
channels correspond to actual short southward IMF period.
More surprising, on the other hand, is that not only the
sunward flow remains even during those periods of south-
ward IMF, but also two dispersed ion structures are observed
almost simultaneously by DMSP F13 during one of those
southward incursion of the IMF. This is very likely due to
the short duration of those southward incursions of the IMF.
They are, in fact, long enough to trigger reconnection at the
low-latitude magnetopause, but apparently short enough not
to switch off reconnection in the lobe.

A more in-depth study with simulation of the dayside
ionosphere experiencing the effects of two cusp-like parti-
cle precipitations regions and their corresponding oppositely
directed plasma flows would be of high interest. Such a study
would undoubtedly help to improve our understanding of the
ionosphere response to this complex configuration, namely
two X-lines.
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