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Abstract. We have investigated the energetics of the sum-
mer circulation over tropical and extratropical South Amer-
ica. The kinetic energy equations of divergent (Kχ ) and rota-
tional (Kψ ) motion are utilized. All the terms of these equa-
tions are calculated on each day for five summers (November-
February 1985–1990), using global wind analysis from the
National Meteorological Center (NMC), now National Cen-
ters for Environmental Prediction (NCEP). The regional ki-
netic energy balance showed that the energy cycle over South
America during the summer is,APE toKχ through the term
−χ∇28, andKχ to Kψ through the termf∇ψ · ∇χ . In
the literature, several dominant oscillation modes have been
noted over South America, namely the annual cycle, inter-
annual, seasonal, intraseasonal, and high frequency scales,
as revised by Lima. Results of the power spectrum analy-
sis of kinetic energy terms indicate several statistically sig-
nificant peaks and these have been confirmed with a fouth-
order Butterworth filter. A well-defined mode, with a pe-
riod around 30 days, was detected in the terms−χ∇28 and
f∇ψ ·∇χ , likely associated with Madden-Julian Oscillation
(MJO). Later, we discuss the local kinetic energy balance us-
ing Mak’s local energetics scheme. We attempted to verify
how the intraseasonal component interacts with other domi-
nant oscillations over South America, such as seasonal cycle
and high frequency disturbances,. It is noted that the major
interactions among the three temporal scales occur mainly
close to the South Atlantic Convergence Zone (SACZ) re-
gion. The temporal scale interactions in the Bolivian High
(BH) and Northeast Brazil Low (NL) are distinct, and the
dominant temporal scales may change from year to year.

Key words. Meteorology and atmospheric dynamics (cli-
matology, general circulation, tropical meteorology)

1 Introduction

Summer circulation over South America shows several in-
teresting characteristics. In the upper troposphere a warm
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anticyclone, known as the Bolivian High (BH) develops over
the Bolivian-Peruvian altiplano during the austral summer.
To the east of this high in the upper levels a trough forms ex-
tending to the western South Atlantic. This is known as the
Northeast Brazil Low (NL). At low levels a continental low
develops in the region of Paraguayan-Argentian Gran Chaco
and Papeau Sierras. Northerly and northwesterly low-level
flow is seen along the eastern slopes of the tropical and sub-
tropical Andes while east-northeasterly trades prevail over
much of the Amazon basin. These low-level winds are im-
portant for the moisture flux and rainfall over South America
during the summer (Rao et al., 1996). Virji (1981) deduced
most of the characteristics of the summer circulation over
South America using early observations of the cloud wind
data obtained from geostationary satellites. Figueroa and No-
bre (1990) studied the structure of the climatological summer
rainfall over South America and the mechanisms associated
with them.

There are two suggestions for the origin of the Bolivian
High. Gutman and Schwerdtfeger (1965) suggested that it
is maintained by the heat source mainly, the latent heat over
the plateau. Rao and Erdogan (1989) confirmed the impor-
tance of latent heating. Another interesting aspect of Rao
and Erdogan’s (1989) study is the comparison of the inten-
sity of heat source over the Altiplano in South America and
eastern Tibet. They found that heating over northeastern Al-
tiplano was stronger in 1979 than that over eastern Tibet.
The Tibetan High in the upper troposphere is a part of the
well-known summer monsoon circulation over South Asia.
On the other hand, studies by Silva Dias et al. (1983), De-
Maria (1985), Kleeman (1989), Gandu and Geisler (1991),
Figueroa et al. (1995) and others, suggest the importance of
Amazonian heating instead of heating over the Altiplano for
the formation of the Bolivian High. Recently Lenters and
Cook (1997) examined the characteristics of upper tropo-
spheric summer circulation over South America using a gen-
eral circulation model, a linear model and observational data.
They noted that the BH and accompanying NL are generated
in response to precipitation over the Amazon basin, central
Andes and South Atlantic Convergence Zone (SACZ) with
African precipitation also playing a crucial role in the gener-
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ation of NL. Regarding the position of BH, Lenters and Cook
(1997) concluded that it is primarily determined by Amazo-
nian precipitation.

In a recent study Chen et al. (1999) discussed the mainte-
nance of austral summertime upper tropospheric circulation
over tropical South America, in particular the BH–NL sys-
tem. They discussed the spatial relationship between the ve-
locity potential (χ) and stream function (ψ) and suggested
that the BH–NL system is maintained by South American
local heating and remote African heating. They pointed out
the existence of the Sverdrup balance for the BH–NL system
which agrees with a similar conclusion reached by Lenters
and Cook (1997).

Although the general aspects of the atmospheric circula-
tion over South America have become better known in recent
years, their dynamics have not yet been completely under-
stood. Thus, we propose to investigate the energetics of the
summer circulation over South America by separating the ki-
netic energy into theψ andχ parts. We use the formalism
of Krishnamurti and Ramanathan (1982) and Krishnamurti
et al. (1998) to estimate the generation of kinetic energy
and to determine the energy cycle for this region. This will
help to understand how kinetic energy inψ andχ parts is
maintained. We calculated the energy conversion terms on
a daily basis for the summer season (November–February
1985–1990) and, in addition, we intent to detect the domi-
nant oscillation modes. We also study the local energetics
using the methodology developed by Mak (1991), which sep-
arates the kinetic energy (K) into seasonal, intraseasonal and
high frequency components, attempting to analyze what are
the dominant periodicities in the daily values ofKψ andKχ ,
and how these oscillations are maintained.

Section 2 presents the data and methodology. Section 3
describes the results and discussions, where the regional en-
ergetics (Sect. 3.1), periodicities in the energetics (Sect. 3.2)
and local energetics (Sect. 3.3) are discussed. There follows
a brief section of concluding remarks.

2 Data and methodology

We have used global data set obtained from NMC (National
Meteorological Center, now National Centers for Environ-
mental Prediction NCEP). The variables used are zonal wind
(u), meridional wind (v), geopotential height (z) and tem-
perature (T ) fields with a rhomboidally truncated 30 wave
number (R30) at 12 UTC. There were 12 pressure levels be-
tween 1000 hPa each at 50 hPa. The original data are avail-
able from 1 November 1985 to 31 January 1991. When the
present work was performed the NCEP reanalysis data were
not available to us.

Some modifications were made in the operational model
of the NMC during the period from 1985 to 1988 (Trenberth
and Olson, 1988). The changes in the analytical procedures
and their influence on the data are described by Trenberth and
Olson (1988), Mo and Rasmusson (1993), and Kanamitsu
and Saha (1995). Here, emphasis will be given to the sum-

mer season (November to February – NDJF). Trenberth and
Olson (1988) compared the European Center for Medium
Range Weather Forecasts (ECMWF) and NMC data. They
found that NMC data show major problems prior to May
1986 south of 50◦S. In general the representation of divergent
wind improved as the analytical procedures became more so-
phisticated to include more realistic diabatic heating effects.
This introduced discontinuties. In general, the data over con-
tinents (including South America) should be considered su-
perior compared with those over the Southern Oceans. Mo
and Rasmusson (1993) found that the overall agreement in
the vorticity balance at 200 hPa between NMC and ECMWF
was generally satisfatory. Kanamitsu and Saha (1995) evalu-
ated the systemic errors in NMC analysis and this will be dis-
cussed later while analyzing the kinetic energy budget over
South America.

The divergence (D), the vorticity (ζ ), χ , ψ and the di-
vergent horizontal wind (uχ , vχ ) and rotational horizontal
wind (uψ , vψ ) components were calculated from the global
spectral components. These fields were transformed to a
global grid (96×76 points), which corresponds to 3.75◦ lon-
gitude by about 2.25◦ latitude on the transformed grid. The
kinematic method was used for computing vertical motion,
considering for the lower and upper boundary conditions (at
level 1000 hPa and 50 hPa, respectively) a value of zero for
ω. A linear mass adjustment in divergence field is made to re-
duce inherent observational errors (Lima, 1996). With these
data at grid points the energy parameters were calculated.

Here we use the Krishnamurti and Ramanathan (1982) and
Krishnamurti et al. (1998) budget equations forKψ andKχ ,
expressed by the relations:〈〈
∂Kψ

∂t

〉〉
=

〈〈
Bψ

〉〉
+

〈〈
C(Kχ ,Kψ )

〉〉
−

〈〈
D(Kψ )

〉〉
(1)〈〈

∂Kχ

∂t

〉〉
=

〈〈
Bχ

〉〉
+

〈〈
C(APE,Kχ )

〉〉
−

〈〈
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−

〈〈
D(Kχ )

〉〉
(2)

In these equationsAPE denotes available potential energy,
Bψ andBχ denote boundary flux terms, andDψ andDχ de-
note dissipations terms, which we ignore in this study. The
energy conversion terms are represented by the bracketed
terms, the positive sign denotes an energy exchange from the
first to the second member. The double brackets〈〈·〉〉 denote
the integrations in the horizontal and vertical domain.

The various components of the budget equations are de-
fined by relations:〈〈
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〉〉
=

〈〈
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28
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〉〉
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1

2

〈〈
(u2
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χ )

〉〉
(6)

the expressions (3) and (4) represent the generation ofK (if〈〈
C(APE,Kχ )

〉〉
> 0) and interactions betweenKψ andKχ ,

respectively.J represents the Jacobian operator and∇2 is
the two-dimensional spherical Laplace operator. Other terms
are already defined earlier. The interpretation of each term
in the budget Eqs. (1 and 2) was made by Krishnamurti and
Ramanathan (1982).

The magnitude of the termf∇ψ ·∇χ depends on the ori-
entation of the vectors∇ψ and∇χ . In the Southern Hemi-
sphere, if∇ψ · ∇χ < 0 the energy exchange is fromKχ to
Kψ , while it is opposite if∇ψ · ∇χ > 0. If ∇ψ and∇χ

are perpendicular, no energy exchange occurs between these
components.

The term∇2ψ(∇ψ · ∇χ) expresses the vorticity effect
on kinetic energy budget ofKχ andKψ components, since
ζ = ∇2ψ . It is important near the equator wheref is small.
The magnitude of this term also depends on the orientation
of vectors∇ψ and∇χ .

The term∇2χ(∇ψ)2/2 depends on covariance of the hor-
izontal divergence∇ · V H = −∇2χ and the kinetic energy
of the nondivergent componentKψ = (∇ψ · ∇ψ)/2. At
any point the contribution of this term toKψ can be writ-
ten as∂Kψ/∂t = ∇2χ(Kψ ) or ∂/∂t logKψ = ∇2χ . Thus,
this term leads to exponential growth ofKψ wherever∇2χ is
positive.

The termωJ(ψ, ∂χ/∂p) expresses the role of vertical mo-
tion in kinetic energy change, since∂χ/∂p ∼= −λ2∂/∂p∇2χ

and theλ2 is the Rossby deformation ratio. A simple inter-
pretation of this term is difficult.

The term−χ∇28 represents the role of vertical circula-
tions (Hadley and east-west) in theAPE liberation, associ-
ated with warm (cold) air rising and cold (warm) air sinking
in the domain.

Order of magnitude calculations show that the first two
terms in Eq.(4) depend on the orientation of∇ψ and∇χ .
Furthermore, these terms oppose each other andf∇ψ ·∇χ is
the largest term (Chen and Wiin-Nielsen, 1976; Krishnamurti
and Ramanathan, 1982; and others).

Also the zonal kinetic energy (K) is calculated in the two
areas of interest (see below), expressed by

〈〈
K

〉〉
=

〈〈
ū2/2

〉〉
.

For the analysis of periodicities in the energy terms of the
budget equations we build a time series for each energy pa-
rameter, calculating day-by-day, for each summer at each
grid point,K, Kχ andKψ terms at level 200 hPa, and the
energy conversion terms (integrated in the vertical), are inte-
grated over the regions of interest, i.e., tropical (10◦N – 30◦S,
30◦W – 90◦W) and the extratropical (30◦S – 60◦S, 30◦W –
90◦W) South America. To characterize the dominant tem-
poral fluctuations in the energy terms, initially the annual
cycle of the time series of each energy term was removed.
The power spectrum of the time series of this energy terms
was estimated by correlation coefficients, by fitting a ”null”
hypothesis continum to the spectrum for Markov red noise
persistence at 95% (Mitchell et al., 1966). The procedure
for computing power spectrum for this method is given in

Lima (1996). The periodicities thus obtained were confirmed
applying a 4a order Butterworth bandpass filter (Murakami,
1979), considering different frequency bands and the statisti-
cal significance at 90% and 95% was calculated throughχ2

distribution.
To analyze the energy conversions between the temporal

scales, seasonal (91 days), intraseasonal (fluctuations with
periods between 7 and 91 days) and high frequency (fluctu-
ations associated with the transient disturbances, in this case
with periods less than 7 days), we used Mak’s local ener-
getics scheme (Mak, 1991). The equation that governs the
kinetic energy associated with the intraseasonal component
of the flow, can be expressed as:〈
∂K1

∂t

〉
=

〈
V 1 ·A0,1

〉
+

〈
V 1 ·A1,1

〉
+

〈
V 1 ·A1,2

〉
+

〈
V 1 ·A2,2

〉
− 〈V 1 ·∇81〉 +

〈
V 1·F 1

〉
(7)

The left-hand side of Eq. (7) represents the temporal vari-
ation of the kinetic energy of the intraseasonal component.
The first four terms on the right-hand side of Eq. (7) de-
note the advective terms resulted from interactions between
three temporal scales considered, and their sum is defined
by symbol SAT. The term〈−V 1 ·∇81〉 denotes the con-
tribution from episodal average of the work done by the
pressure-gradient force, i.e., it expresses the role of the ver-
tical circulations in the release ofAPE, associated with
upward/downward motion of the relatively warm/cold air.
The term〈V 1 · F 1〉 is a measure of the local frictional dissi-
pation rate. The subscripts 0, 1 and 2 represent the tempo-
ral scales, seasonal, intraseasonal and high-frequency com-
ponents, respectively. The brackets denote the episodal av-
erages (91 days) of each quantity. The interactions terms
A0,1,A1,1,A1,2,A2,2 are defined in Mak (1991).

Here, all the terms in Eq.(7) were computed for summer
seasons of the 1986–1987 and 1988–1989, except the term
〈V 1 · F 1〉, which was evaluated as a residue by assuming the
left-hand side of Eq. (7) to be zero. The evaluation of budget
of the local kinetic energy was made at 200 hPa level.

3 Results and discussion

3.1 Regional energetics

The mean values ofK, Kψ andKχ in (1) tropical and (2)
extratropical regions of South America at levels 850 hPa and
200 hPa, for summer season are shown in Table 1. Analysis
of this table shows that, in general, at both levels, the mag-
nitude ofKψ is slightly higher thanK, and at 200 hPa it is
higher in area 2 than area 1. The energy termsK, Kψ and
Kχ in the two regions show a maximum at 200 hPa where
the strong westerlies (subtropical jet stream) exist. Thus, this
result shows, as is well known, thatKψ forms most of kinetic
energy of the tropics and more so in the extratropics.

The temporal variations ofK, Kψ andKχ at 850 hPa are
displayed in Fig. 1. This figure shows that the magnitude of
Kχ at 850 hPa is low in all years, in both areas.KandKψ
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Fig. 1. Temporal variations of the kinetic energy (m2s−2) at 850 hPa, mean for tropical South America: (a) K, (b) Kψ , (c) Kχ , and
extratropical South America: (d) K, (e) Kψ and (f) Kχ . Zero represents 1 November 1985.

Table 1. Mean values of the kinetic energiesK, Kψ andKχ , and
the ratiosKχ/Kψ , in areas (1) tropical and (2) extratropical South
America, at levels 850 hPa and 200 hPa, for summer. Values are
expressed in m2s−2

Energy terms

Regions Levels K Kψ Kχ Kχ/Kψ

(hPa) m2s−2 m2s−2 m2s−2

1 850 20.64 24.42 3.04 0.12

1 200 109.14 150.8 9.95 0.065

2 850 58.47 81.12 1.35 0.017

2 200 390.47 468.38 3.3 0.007

show magnitudes larger thanKχ , being larger in area 2 than
in area 1. At 200 hPa (Fig. 2) we note that the time variation
of Kχ is low, but larger in area 1 than in area 2. The mag-
nitude ofKχ is small compared to the magnitudes ofKand
Kψ at all the times, in both lower and upper levels. This
means that there is no storage ofKχ , andKχ is converted
imediately toKψ , which indicates the catalytic role in the
conversion ofAPE to theKψ . This was also noted by Chen
and Wiin-Nielsen (1976).

Another aspect of the analysis of time series of the terms
K,Kψ andKχ at levels 850 hPa and 200 hPa (Figs. 1 and 2,
respectively) is the dominant annual cycle inKψ andKχ at
850 hPa, which is better defined in area 2 (extratropics) than
in area 1 (tropics). Also, the annual cycle of the energy pa-
rameters is better defined at 200 hPa. We note that the max-

ima in annual cycle inKψ andKχ occur in austral winter
and the annual cycle ofKχ at 200 hPa is dominant and more
distinct in area 1 than in area 2. In addition, we note inter-
annual variations ofK, Kψ andKχ at 200 hPa in both the
magnitude and the time of occurrence.

Area-time averaged kinetic energy components and con-
versions terms are given in Table 2, for summer seasons, in
tropical and extratropical South America. This table shows
that the dominant conversion term in the budget equations
of Kψ andKχ over South America, in all summers, is the
Coriolis term, denoted asf∇ψ · ∇χ , with positive sign, in-
dicating a conversion ofKχ into Kψ . The other terms are
of smaller magnitudes. The signs of the energy conversion
termsC(APE,Kχ ) andC(Kχ ,Kψ ) are positive, indicating
that the direction of the energy conversion is, as expected
APE→ Kχ → Kψ . Exception is noted in summer 3, when
the termC(APE,Kχ ) is negative but is of small magnitude,
on order of−0.9× 10−4 m2s−3, while the termC(Kχ ,Kψ )
is positive and shows larger magnitude (values on order of
1.15× 10−4 m2s−3). In this summer, the direction of the
energy exchange isAPE← Kχ ← Kψ .

A strong positive contribution of the zonal part of
C(APE,Kχ ) is noted during the summer in region 2. If
the spectrum of theAPE andK were separated in zonal and
eddy components, it seen that most ofAPE is in zonal part
(Sheng and Hayashi, 1990). The circulations of Hadley and
Ferrel contribute for the conversion betweenAPE andK of
the zonal motion (Grotjham, 1993). Lambert (1989) calcu-
lated the global balance ofKψ andKχ considering the parti-
tion of this balance in zonal and eddy components. He noted
that in individual years the conversion between zonalAPE
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Fig. 2. Temporal variations of the kinetic energy (m2s−2) at 200 hPa, mean for tropical South America: (a) K, (b) Kψ , (c) Kχ , and
extratropical South America: (d) K, (e) Kψ and (f) Kχ . Zero represents 1 November 1985.

Table 2. Area-time averaged kinetic energy terms for summers in(1) tropical and(2) extratropical domains of South America. Values are
multiplied by 10−4 m2s−3

Energy conversions terms
Region 1

Seasons 〈〈f∇ψ ·∇χ〉〉
〈〈

∇2ψ∇ψ ·∇χ
〉〉

1
2

〈〈
∇2χ (∇ψ)2

〉〉 〈〈
ωJ(ψ,

∂χ
∂p
)
〉〉 〈〈

C(APE,Kχ )
〉〉 〈〈

C(Kχ ,Kψ )
〉〉

1 (NDJF 85–86) 1.139 -0.14 -0.062 0.024 0.316 0.961
2 (NDJF 86–87) 1.332 -0.155 -0.017 0.033 0.480 1.193
3 (NDJF 87–88) 1.498 -0.293 -0.116 0.065 -0.087 1.154
4 (NDJF 88–89) 1.112 -0.225 -0.077 0.041 0.163 0.852
5 (NDJF 89–90) 1.507 -0.204 0.009 0.041 0.810 1.352

Mean 1.318 -0.203 -0.053 0.041 0.336 1.104

Region 2

Seasons

1 (NDJF 85–86) 2.130 -0.151 -0.260 0.012 2.623 1.732
2 (NDJF 86–87) 3.278 -0.083 -0.133 0.024 3.757 3.088
3 (NDJF 87–88) 2.769 0.011 -0.068 0.020 3.072 2.732
4 (NDJF 88–89) 3.214 0.129 0.019 0.004 3.273 3.368
5 (NDJF 89–90) 2.438 -0.0003 0.028 0.021 2.328 2.488

Mean 2.766 -0.0188 -0.083 0.016 3.011 2.680

andKχ is dependent on season: in January the conversion is
direct, furnishing energy to drive the divergent circulations
(of the Hadley type and east-west) and, in July the conver-
sion is opposite. He stresses the role of Ferrel circulation in
this last conversion. Most of zonal part ofKχ at upper lev-
els is due to Hadley circulation and the smaller contribution

of this term is due to Ferrel circulation. This strong positive
contribution of the termC(APE,Kχ ) indicates that the di-
vergent circulation is important in this season. Also it can
be noted in the tropics (area 1) the conversion fromAPE to
Kχ is less than the conversion fromKχ toKψ . From Eq. 2
this implies a decrease with time ofKχ . The time tendency
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term ∂Kχ/∂t in general is close to zero. Thus, this implies
an influx of divergent energy (Bχ ) into the region. Table 2
also shows that in extratropics of South America the term
C(APE,Kχ ) is larger than the termC(Kχ ,Kψ ), again this
implies a boundary out flux ofKχ , in order to keep∂Kχ/∂t
close to zero.

In the midlatitude regions a balance occurs between the
horizontal advection of temperature and the adiabatic term,
while in the tropics a balance occurs between the diabatic
term and adiabatic term and theAPE generated is immedi-
ately converted intoKχ . The immediate conversion between
Kχ andKψ occurs because in the tropical troposphere the
horizontal gradients of temperature are very weak and the
local temporal variation of temperature is very small. With
good aproximation, the termodynamic energy equation re-
duces to the balance between the adiabatic cooling term and
the diabatic heating term (Holton, 1992). This result was
confirmed by Nitta (1970) through a study of heat balance
in Marshall Island area. He found that, for all frequency
bands, the eddyEPD is generated by the heat of condensa-
tion, mainly by the release of the latent heat of condensation
and is immediately converted to eddy kinetic energy.

Another aspect we note in Table 2 is that the kinetic energy
budget over South America during the summer does not van-
ish. A similar result was also observed in earlier works, for
example, Chen and Wiin-Nielsen (1976), Chen (1980), Lam-
bert (1989), and others. Chen and Wiin-Nielsen (1976) noted
that the discrepancy is larger in tropics than subtropics due to
the stationary mode. Smith (1970) discussed the implications
of calculating energy budgets in open systems. To justify the
inconsistency observed in kinetic energy cycle over South
America, two possibilities can be raised. One of them is
the importance of the lateral boundary energy fluxes and the
other, problems involved in the NMC analysis. Kanamitsu
and Saha (1995) evaluated the systematic errors existent in
NMC’s analysis. Their results show a reduction of theKψ
andEPD in all scales, mainly the small and medium scales.
Aproximately 50% of this reduction of energy is explained
by excess of horizontal and vertical diffusion. The remaining
part of this energy reduction can be related to the generation
of EPD. This occurs probably due to the parametrization
used for cumulus convection (Kuo scheme), which is a sink
of EPD in small and medium scales. In spite of the men-
tioned inconsistency in the kinetic energy budget over South
America, the results are still useful to understand the nature
of the summer circulation over South America.

In order to put the results of Table 2 into a broader perspec-
tive, we have prepared the energy cycle diagram for tropics
and extratropics of South America, given in Fig. 3. The larger
boxes refer to the energy exchange components defined in
Sect. 2 and the arrows show the overall direction of the con-
version rates.

This regional energetics analysis shows that the main fea-
tures of the atmosphere circulation over South America con-
firm earlier results. Also, the results presented in Table 2
show that the kinetic energy cycle over South America dur-
ing the summer season is:APE→ Kχ → Kψ .

According Lenters and Cook (1997), most of the struc-
ture of the atmosphere circulation in upper levels over South
America during the summer is associated with the heat of
condensation. Thus, a possible physical mechanism that ex-
plains the summer circulations over this region is that a heat
source over South America would generateAPE, through
mainly latent heat of condensation which gets converted into
Kχ through direct thermal circulation, represented by the
term−χ∇28, and this toKψ through the term(f + ζ )∇ψ ·
∇χ .

3.2 Periodicities in the energetics

A visual examination of the energetic terms in Figs. 1 and 2
show the existence of some dominant periodicities. Thus, it
would be interesting to make a systematic study of the peri-
odicities in the energetics of summer circulation over South
America. The periodicities obtained using FFT (Fast Fourier
Transform) were confirmed through an estimated spectrum
of statistically significant terms at 90% and 95%, using the
method described by Mitchell et al. (1966). These results
are very similar and some of them are presented to ilustrate
the method of Michell et al. (1966) and displayed in Fig. 4.
Similar figures (not shown) are prepared for all the terms and
for all five summers, both for areas 1 and 2.

The periodicities calculated by the method of Mitchell et
al. (1966) were confirmed with the 4a order Butterworth fil-
ter, considering different frequency bands. The peaks ob-
tained by the two methods are very similar. Table 3 shows
these results for the summer season in the (1) tropical and (2)
extratropical areas over South America. We included in this
table only dominant (significant at 90% and 95%) periodici-
ties between 20–60 days. This table shows large interannual
variability. That is, only in some years were dominant peri-
odicities observed in all the terms of the budget equations of
Kχ andKψ , in the two study domains. Since the Madden-
Julian Oscillation can occur both in theχ andψ (Geisler and
Pitcher, 1988; Chen and Chen 1997), one would expect the
signal of MJO in the energy interactions terms also, although
with periodicities different from those ofχ andψ .

From Table 3 it can be seen that the termKψ , which con-
tains most of kinetic energy over tropical South America
at 200 hPa in several years shows significant periodicities
of around 20 days and 30–40 days. In extratropical South
America, this term shows a peak of 20 days only in the sum-
mer of 1989–1990.

One good indicator of convective activity and the tropical
heating is upper tropospheric divergence. The termKχ at
200 hPa represents the kinetic energy associated with diver-
gent part of the tropical circulation. This term shows dom-
inant periodicity of around 30 days in area 1 in summer 4
(NDJF 1988–1989). In area 2,Kχ did not show any domi-
nant periodicities in the range 20–60 days.

The term−χ∇28 expresses the conversion betweenAPE

andKχ (direct/indirect thermal circulation of warm/cold air
rising and cold/warm air sinking, respectively). The analy-
sis of the periodicities in this term shows peaks of around
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Fig. 3. Schematic energy cycle diagram of the atmospheric system. Arrows denote the most likely direction of the conversion between
energy components for(a) tropical and(b) extratropical South America. Values of energy exchanges are within the boxes. The values are
multiplied by 10−3 m2s−3.

Fig. 4. Power spectrum estimated by method of Mitchell et al. (1966) in summer 3 in the area 1 for the terms:(a)Kat 200 hPa,(b) Kψ at

200 hPa,(c)Kχ at 200 hPa,(d) f∇ψ ·∇χ , (e)∇2ψ∇ψ ·∇χ , (f) 1
2∇2χ∇2ψ , (g)ωJ(ψ, ∂χ

∂t
), (h) −χ∇28.
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Table 3. Dominant periodicities in the energy parameters during five summers (NDJF 1985–1986, 1986–1987, 1987–1988, 1988–1989,
1989–1990) over tropical and extratropical South America. Values are expressed in days

Energy terms Tropics Extratropics

1 2 3 4 5 1 2 3 4 5

Kat 200 hPa - - 45* - - - - - - 20**

Kψ at 200 hPa 35* 21* 43** 36* - - - - - 20**

Kχ at 200 hPa - - - 30* - - - - - -

〈〈f∇ψ ·∇χ〉〉 - 25* - - 30* - - 22** 26**〈〈
∇2ψ∇ψ ·∇χ

〉〉
25* 31** - 44** - - - 30** - 22**〈〈

1
2∇2χ∇2ψ

〉〉
- - 33* 29** - - - - - 22*〈〈

ωJ(ψ,
∂χ
∂p
)
〉〉

23** 22* (37*) - 36** - 26** - 35* - -〈〈
−χ∇28

〉〉
29** 30* 28** 27* - - - 36** - 30**

The symbols (*), (**) and (-) denote significance at level 90%, 95% and not significant at 90% or 95%, respectively. The number 1, 2, 3, 4
and 5 denote the five summers, respectively.

30 days in all summers in the tropics, except in summer 5
(NDJF 1989–1990). In the extratropics of South America
values of the periodicities ranging from 30 and 36 days were
observed in individual years for the same term.

The term which explains most of the energy conversion
betweenKχ andKψ over South America isf∇ψ ·∇χ . This
term in tropical South America, in individual years, shows
periodicities on the order of 20–30 days. In the extratropics
of South America smaller periodicities were observed for the
termf∇ψ ·∇χ , varying in individual years from 22 days to
26 days.

Other dominant periodicities in energy conversion terms
in area 1 are observed in the terms1

2∇2χ(∇ψ)2 (with val-
ues of 29 and 33 days),ωJ(ψ, ∂χ/∂p) (values in the range
22 and 37 days) and∇2ψ∇ψ · ∇χ (values in the range 25
and 44 days), as can be seen in Table 3. Analyzing domi-
nant oscillations in the energy parameters in area 2 we note
periodicities of around 30 days in term∇2ψ∇ψ · ∇χ and
values of 26 and 35 days were observed in individual years
in ωJ(ψ, ∂χ/∂p).

Comparing results for the areas 1 and 2 (Table 3) we noted
dominant oscillations with a 20–60 days period, both in trop-
ical and extratropical latitudes of South America. This is
similar to that noted by other authors for regions other than
South America reviewed by Madden and Julian (1994). Dur-
ing the summer, the MJO signal was dominant in the energy
parameters associated withχ field. This confirms earlier re-
sults of Boer (1995) and Lambert (1990).

Due to the episodic character of MJO (Boer, 1995), a wide
band of periodicities is noted (Wang and Xie, 1997), and the
signal of this oscillation is cleary seen in the results of energy
budget of intraseasonalKχ andKψ (Lambert, 1990). We
are suggesting that the oscillations observed in kinetic energy
terms integrated over South America, of about 20 – 45 days
(Table 3), can be associated with MJO. However, to establish
the energy cycle of MJO it is necessary to make global calcu-

lations. Based on kinetic energy cycle discussed earlier, the
existence of the dominant periodicities in the kinetic energy
terms, mainly inf∇ψ · ∇χ , ∇2ψ∇ψ · ∇χ and−χ∇28,
and noting the considerations made in earlier works about
the relationship between (a) the diabatic heating, (b) the la-
tent heat through cumulus convection and (c) the existence
of MJO in tropics and extratropics latitudes, we suggest that
the same kinetic energy cycle probably is valid for this os-
cillation, at least in a regional context over South Amer-
ica during the summer season. In a recent study Chen and
Yanai (2000) used the Tropical Ocean-Global Atmosphere
(TOGA) Coupled Ocean-Atmosphere Response Experiment
(COARE) data to study the energetics of the MJO. They also
found a similar energy cycle for the MJO.

The occurrence of MJO signal in the extratropics in sum-
mer is associated with the strong zonal wind (jet) in this re-
gion (Dasheng and Wenzhong, 1995). These authors suggest
that the origin of MJO in these latitudes is due to a local insta-
bility. Thus a local energetic analysis on the lines suggested
by Mak (1991) will be of interest in this context. Local ener-
getics will discussed in the next section.

3.3 Local kinetic energy balance

To clarify the dynamical nature of MJO over South Amer-
ica, we consider a local energetic analysis of Mak (1991)
attempting to examine how the MJO interacts with the others
dominant modes over South America (such as seasonal and
high-frequency variations). This analysis is made over the
whole of South America because the MJO signal arises both
in tropical and extratropical latitudes. Further, through the
local energetic analysis one can identify how much energy
is due to the energy conversion and how much is due to the
energy propagation.

For the local energetic analysis we consider two summers:
DJF 1986–1987 and 1988–1989. These summers are consid-
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ered here because these were seasons when the atmospheric
circulation was anomalous on a global scale, characterized
by drought and flood conditions over South America, respec-
tively (Rao et al., 1998). The year 1987 was characterized
by moderate El Nĩno phenomenon and the summer of 1988-
1989 was characterized by the La Niña phenomenon (Cli-
mańalise, 1986, 1987, 1988, 1989).

3.3.1 Local kinetic energy considerations

Kinetic energy field of the three components (K0, K1 and
K2, respectively) in both summers (Fig. 5) shows that the
maximumK0 is located in extratropical latitudes and ap-
proximately corresponds to the location of the subtropical
jet stream over South Atlantic and southeast Pacific Ocean
(Figs. 5a and 5d, respectively). This result confirms what was
noted by Eastin and Vincent (1998). In the summer of 1986–
1987 (Fig. 5b) there is a center of episodic energy (K1) with
values on order of 105 m2s−2. This center is located aproxi-
mately at 55◦W between 30◦S and 60◦S, and coincides with
the region of SACZ, with a northwest-southeast orientation.
Other centers of maximum values are noted in the southeast
Pacific Ocean (80◦W, between 30◦S and 40◦S) and South At-
lantic Ocean (in 30◦W, between 50◦S and 60◦S), with mag-
nitudes about 90 m2s−2 and 75 m2s−2, respectively. In the
summer of 1988–1989 the center of the maximumK1 located
in the southeast of South America is much weaker (values on
order of 45 m2s−2), and more zonally oriented over the same
region. TheK2 spatial field shows that the high frequency is
more dominant in midlatitudes in both the summers (Figs. 5c
and 5f, respectively), and shows several centers ofK2 in this
region.

Figure 6 shows the spatial distribution of the advective
terms in the local budget equation forK1. The compari-
son of magnitude of these terms for both summers indicate
that the

〈
V 1 ·A0,1

〉
is the dominant term, which represents

the interactions among the seasonal and intraseasonal com-
ponents. This result was expected since the two components
have most of the variance. Also, we note a local wave train
from the Pacific to South Atlantic Ocean, oriented southwest-
northeast, better defined and stronger in terms

〈
V 1 ·A0,1

〉
and〈

V 1 ·A1,1
〉
in the summer of 1986–1987 than in the summer

of 1988–1989. This southwest-northeast pattern is very sim-
ilar to the pattern noted by Nogués- Paegle and Mo (1997)
(their Fig. 9) in 200 height differences associated with see-
saw patterns in rainfall over South America. Nogués-Paegle
and Mo (1997) suggested the possible link of this see-saw
pattern to 30–60 days intraseasonal oscillation. Our results
of investigation into energetics suggest that this see-saw pat-
tern is probably generated by the interaction of seasonal and
intraseasonal components over South America. Further, in
the summer of 1988–1989, we observed a maximum positive
center in the term

〈
V 1 ·A0,1

〉
, with values on the order of

2.5× 10−3 m2s−3, located on west coast of South America
(90◦W, 5◦S). This also is noted in the term

〈
V 1 ·A1,1

〉
, but it

is weaker. Figures 6d and 6h show that the high frequency
is dominant in midlatitudes in both the summers, as noted by

the term
〈
V 1 ·A2,2

〉
.

Following Mak (1991) the term
〈
V 1 ·A0,1

〉
can be written

as the sum of two terms: (1) a redistribution of the kinetic en-
ergy of the intraseasonal component due to the advection by
the seasonal flow component−(V 0 ·∇) 〈K1〉, and (2) a gen-
eration of kinetic energy by a barotropic process represented
by the scalar productE1 · D0. TheE1 vector is a measure
of the local structure of a disturbance (Lau, 1988) such that
it gives the local shape and orientation of the intraseasonal
component of the flow. TheD0 vector is a measure of the
deformation field of the seasonal flow component. The pos-
itive sign ofE1 ·D0 means that the disturbance extracts ki-
netic energy from the basic flow. The negative sign implies
the opposite. A breakdown of these processes can illustrate
the role of interactions of scales in the redistribution of local
energy. Thus, we may write, following Mak (1991):〈
V 1 ·A0,1

〉
= −(V 0 ·∇) 〈K1〉 + 〈E1〉 ·D0 (8)

where

A0,1 = −L1 {(V 0 ·∇)V 1+ (V 1 ·∇)V 0} (9)

〈E1〉 =
1

2

(〈
ν2

1

〉
−

〈
u2

1

〉
− 〈u1v1〉

)
(10)

D0 = (Dst,Dsh) (11)

Dst =
1

a cos8

∂u0

∂λ
−

1

a

∂ν0

∂8
−
ν0

a
tan8 (12)

Dsh=
1

a cos8

∂ν0

∂λ
+

1

a

∂u0

∂8
+
u0

a
tan8 (13)

whereL1 is linear operator in time that includes fluctuations
with scales longer than a week but shorter than a season.V 0
andV 1 are horizontal velocity associated with seasonal and
intraseasonal components, respectively.u0, ν0 are the sea-
sonal zonal and meridional components of wind.λ is longi-
tude,8 is latitude, anda is the Earth’s radius. TheDst and
Dsh are the deformation fields components due the stretching
and shearing of this field.

Figure 7 shows the spatial fields of theD0 andE1 vec-
tors, the direction of these vectors, the spatial distribution of
termsE1 · D0 and(−V 0 · ∇) 〈K1〉, into the two summers,
respectively. As suggested from the field of direction of the
D0 vector, in general, we note that locally the disturbance is
oriented in the NW–SE direction, in both summers (Figs. 7a
and 7g, respectively). This configuration indicates thatD0
has a northward component of propagation. The direction
of propagation of the intraseasonal component is related to
the direction of theE1 vector. In summer of 1986–1987, the
major axis ofE1 is in NW–SE direction and in the summer
of 1988–1989, this axis is in east-west direction (Figs. 7b
and 7h, respectively). Both configurations indicate that these
components in both the summers are propagating westward.
Also, the shape of intraseasonal component in the summer of
1986-1987 indicates a wave-like disturbance.
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Fig. 5. Distribution of the episodal average kinetic energy at 200 hPa of the seasonal (left panels), intraseasonal (middle panels) and high
frequency (right panels) components, in summers of 1986–1987 and 1988–1989, respectively. The values are expressed in m2s−2. CI stands
for contour interval.

The orientation ofD0 andE1 in the summers of 1986–
1987 and 1988–1989 is such that it indicates the intrasea-
sonal component would lose energy to the basic flow (Mak
and Cai, 1989). Further, the intraseasonal component is act-
ing to accelerate the flow where the arrows are divergent and
retard the flow where the arrows are convergent. Figure 7d
shows that in summer of 1986–1987,E1 is divergent in jet
stream region, along about 40◦S and 50◦S and southeast Pa-
cific and Atlantic Ocean. Also, in this summer,E1 is di-
vergent in the region between the equator and 10◦S, along
110◦W, which coincides with the location of the other branch
of subtropical jet stream. Between 40◦S and 50◦S, along
110◦W, there is a larger convergence region which indicates
that the mean flow is decreasing in this region. The diver-
gent region in midlatitudes is more intense in the summer
of 1986-1987 than in the summer of 1988–1989 (Figs. 7d
and 7j, respectively).

We note that over most of South Atlantic Ocean and over
continental part of South America the termE1 · D0 shows
strong negative values (values larger than 0.2×10−3 m2s−3)
during the summer of 1986–1987 (Fig. 8e). Some posi-
tive centers are noted in the Pacific Ocean, with magnitudes
higher than 0.2 × 10−3 m2s−3. In the summer of 1988–
1989 a stronger positive center ofE1 · D0 is located off
the west coast of South America, with a maximum value of
1.0×10−3 m2s−3 (Fig. 7k), which is coincident with the low
sea surface temperature region noted in La Niña of 1988–
1989 event. Comparing the results shown in Figs. 6e, 7k
and 7l, we note that the most part of the maximum center
located in Pacific Ocean of term

〈
V 1 ·A0,1

〉
in the summer

of 1988–1989 is generated byE1 · D0 term. In this sum-
mer, negative centers are observed both in the Pacific Ocean

(between 30◦S and 50◦S) and Atlantic Ocean, on the south-
west coast of Africa and southwest coast of Brazil. The
term (−V 0 · ∇) 〈K1〉 for the summer of 1986–1987 shows
a local stronger wave train than in the summer of 1988–
1989, with southwest-northeast orientation, eastward prop-
agating from the Pacific to Atlantic Ocean (Figs. 7f and 7l,
respectively). This pattern is similar to that noted in term〈
V 1 ·A0,1

〉
(Fig. 6a).

Figure 8 shows the spatial distribution of sum of the ad-
vective terms between three temporal scales (denoted by
SAT), 〈−V 1 ·∇81〉 and 〈V 1 · F 1〉. The SAT terms repre-
sent the net energy generation rate associated with the con-
versions between the three temporal components of the flow.
This figure shows that the geographical location of the lo-
cal maximum of SAT associated with these interactions oc-
curs near the climatological position of the SACZ, oriented
along northwest-southeast direction. Comparing the mag-
nitude of SAT,〈−V 1 ·∇81〉 and 〈V 1 · F 1〉 for both sum-
mers, we note that the three terms have equal magnitudes.
The term〈−V 1 ·∇81〉 is spatially opposite to that of SAT.
Further, we note a wave pattern propagating with southwest-
northeast direction, localized over the southern part of South
America. Mak and Cai (1989) studied the problem of the
jet stream instability without considering the separation into
temporal scales. They note that locally, the advection (SAT)
and energy generation〈−V 1 ·∇81〉 terms are in phase, such
that the advection terms denote the process that redistributes
the energy downstream of the maximum energy generation
location. Further, the balance between of local kinetic en-
ergy and the processes of the energy redistribution deter-
mines the instantaneous location of the maximum wave ac-
tivity. Thus, the opposite sign between〈−V 1 ·∇81〉 and
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Fig. 6. Episodal average of the spatial distribution of the four individual advective terms in the summer of 1986–1987:(a)
〈
V 1 ·A0,1

〉
,

(b)
〈
V 1 ·A1,1

〉
, (c)

〈
V 1 ·A1,2

〉
, (d)

〈
V 1 ·A2,2

〉
, and in the summer of 1988–1989:(e)

〈
V 1 ·A0,1

〉
, (f)

〈
V 1 ·A1,1

〉
, (g)

〈
V 1 ·A1,2

〉
, (h)〈

V 1 ·A2,2
〉
. Values are multiplied by 10−3 m2s−3. CI stands for contour interval.
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Fig. 7. In the upper six panels the episodal average of summer of 1986–1987 is shown for direction of the vectors:(a) D0, (b) E1, (c)
D(Dst,Dsh), (d) E1(E1,x , E1,y), and(e) the spatial distribution of the local barotropic energy generation rate (E1 ·D0) as well as(f) the
spatial field(−V 0 ·∇) 〈K1〉. Analogous to(a) – (f) the situation for the summer of 1988–1989 is presented in lower panels(g) – (m).

SAT term means that the maximum episodicK1 is generated
by baroclinic processes essentially by term〈−V 1 ·∇81〉,
while SAT redistributes energyK1. A similar but weaker
pattern is observed in the summer of 1988–1989.

As mentioned earlier, the main systems of the atmospheric
circulation at 200 hPa over South America during the sum-
mer are BH and NL. Table 4 shows the integration of the
local kinetic energy term in these two regions. Distinct dom-
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Fig. 8. Episodal average of the spatial distribution of(a), (d)〈−V 1 ·∇81〉, (b), (e)〈V 1 · F1〉 and(c), (f) the sum of the four advective terms
on the right-hand side of the kinetic energy equation (7) denoted as SAT, to summers of NDJF of 1986–1987 and 1988–1989, respectively.

inant interaction occurs between these systems in both the
summers. In the summer of 1986–1987 in BH and NL, the
stronger signal is observed in the term

〈
V 1 ·A0,1

〉
. Also,

the term
〈
V 1 ·A1,2

〉
, which expresses interactions between

intraseasonal and high frequency components, is stronger.
These results show that in the BH region the dominant atmo-
spheric circulation is the large scale one. In NL region, the
upper circulation and the transient disturbances (for example,
cyclone vortices of upper levels (Gan, 1983)) are important.
However, we note that the dominant temporal scales are not
the same in both summers.

As point out earlier, 1986–1987 and 1988–1989 years are
El Niño and La Nĩna years, respectively. Rasmusson (1991)
discussed the differences in the global atmospheric circula-
tion in both summers. He noted that the divergent pattern
over South American sector suggests relatively wet condi-
tions over the eastern equatorial Pacific and dry conditions
over northeastern South America during 1986–1987, and the
reverse during 1988–1989. This result was also verified by
Lima (1996), with the regional energetic analysis over South
America. Further, Pezzi et al. (1996) noted that the jet stream
of the South Hemisphere shows the seasonal and interannual
variations in its climatological position. In general, during El
Niño years, the jet stream is stronger than in La Niña years.
This feature of the jet stream is observed in earlier works,
such as Kousky et al. (1984) and Ambrizzi (1994), among
others. Thus, our results show that, during the El Niño of
1986–1987, the increase in mean flow was largely due to
contribution of intraseasonal component (as seen in Fig. 7)
and the high divergence over South America (Lima, 1996)

helped to enhance and maintain the subtropical jet stream,
by the Coriolis force, represented by termf∇ψ · ∇χ . Dur-
ing the summer of 1988-1989, the divergence over the conti-
nent is stronger than summer of 1986-1987 (Lima, 1996), but
the contribution of intraseasonal component to mean flow is
weaker, acting to decelerate the jet stream in this summer.

4 Concluding remarks

We have analyzed the energetics of the atmospheric circu-
lation over South America during the summer season. The
study focuses on regional and local features. In addition,
spectral analysis has been made to evaluate the dominant pe-
riodicities in energy terms. However, the main objective was
to learn about the energy exchange processes and to under-
stand how the atmospheric circulation over South America is
maintained. The following conclusions emerge as reasonable
interpretations of these results.

The regional energetic analysis showed the kinetic en-
ergy cycle inKψ andKχ components and explained how
the summer circulation over South America is maintained.
The probable physical mechanism which explains this circu-
lation could be: a heat source over South America to gen-
erateEPD, through latent heat of condensation which con-
verts toKχ through direct thermal circulation, represented
by the term−χ∇28, and this then toKχ through the term
(f + ζ )∇ψ · ∇χ . Another important aspect of this analy-
sis was that several dominant periodicities were detected in
energetic parameters, such as: (1) the annual cycle, better
defined in upper levels, in both tropical and extratropical of
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Table 4. Average contributions of the local energy balance equation terms, in summers of 1986–1987 and 1988–1989. Values are expressed
in 1.0× 10−3 m2s−3

Bolivian High (10◦S-20◦S; 80◦W-55◦W)
×10−4 m2s−3

Periods V 1 ·A0,1 V 1 ·A1,1 V 1 ·A1,2 V 1 ·A2,2 SAT −V 1 ·∇81 V 1 · F1

NDJF 86–87 -1.78 0.65 -0.06 -0.04 -1.23 5.00 -3.77
NDJF 88–89 -1.73 -0.45 0.25 0.14 -1.79 4.46 -2.67

Northeast Brazil Low (10◦S-20◦S; 40◦W-20◦W)
×10−4 m2s−3

NDJF 86–87 1.16 -0.51 -0.24 -0.22 0.19 1.07 -1.26
NDJF 88–89 -0.51 1.48 1.02 -0.18 1.81 -1.50 -0.31

South America, verified in all energy terms; (2) intraseasonal
(30–60 day) oscillation and (3) oscillations of less than 20
days.

The most interesting features to emerge from the periodic-
ities analysis were the occurrence of dominant peaks around
30 days observed in all energy terms, mainly the termsf∇ψ ·

∇χ , ∇2ψ∇ψ ·∇χ and−χ∇28. Spectral analysis of energy
conversions terms permitted us to infer the kinetic energy
cycle of MJO. Probably this cannot be achieved by spectral
analysis of parameters such asψ andχ .

In general, the results of local energy analysis showed that
the dominant interactions between the three temporal scales
over South America occur near or over SACZ region, show-
ing NW–SE orientation, similar to the orientation of SACZ.
Different scales are important over South America: over the
Bolivian High, the main components are seasonal and in-
traseasonal, and over the Northeast Brazil Low, the intrasea-
sonal and high frequency are important. This analysis also
showed the relative importance of the baroclinic and barotro-
pic processes in the dynamics of the summer circulation over
South America.
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Jośe dos Campos, INPE–2685–TDL/126, 1983.

Gandu, A. W. and Geisler, J. E., A primitive equation model study
of the effect of topography on the summer circulation over trop-
ical South America, J. Atmos. Sci., 52, 1573–1583, 1991.

Geisler, J. E. and Pitcher, E. J., On the representation of the 40–50
day oscillation in terms of velocity potential and streamfunction,
J. Atmos. Sci., 45, 1850–1854, 1988.

Grotjahm, R., Global atmospheric circulations – observations and
theories, New York, Oxford University Press, 1993.



M. C. de Lima Moscati and V. B. Rao: Energetics of the summer circulation over South America 97

Gutman, G. and Schwerdtfeger, W., The role of latent and sensible
heat for the development of high pressure system over the sub-
tropical Andes, in the summer, Meteorol. Rundschau, 18, 69–75,
1965.

Holton, J. R., An introduction to dynamic meteorology, 3rd ed., San
Diego, Academic Press, 1992.

Kanamitsu, M. and Saha, S. Spectral budget analysis of the short-
range forecast error of the NMC medium-range forecast model,
Mon. Weather Rev., 123, 1834–1850, 1995.

Kleeman, R., A modeling study of the effect of the Andes on the
summertime circulation of tropical South America, J. Atmos.
Sci., 46, 3344–3362, 1989.

Kousky, V. E., Kagano, M. T., and Cavalcanti, I. F. A, A re-
view of the Southern Oscillation: oceanic-atmospheric circula-
tion changes and related rainfall anomalies, Tellus, 36A, 490–
504, 1984.

Krishnamurti, T. N. and Ramanathan, Y., Sensitivity of the mon-
soon onset to differential heating, J. Atmos. Sci., 39, 1290–1306,
1982.

Krishnamurti, T. N., Sinha, M. C., Jha, B., and Mohanty, U. C. A
study of South Asian monsoon energetics, J. Atmos. Sci., 55,
2530–2548, 1998.

Lambert, S. J., A divergent and rotational kinetic energy budget for
January and July, J. Geophys. Res., 94, 11 137–11 149, 1989.

Lambert, S. J., Observed and simulated intraseasonal energetics, J.
Clim., 3, 1330–1346, 1990.

Lau, N. C., Variability of the observed midlatitude storm tracks in
relation to low frequency changes in the circulation pattern, J.
Atmos. Sci., 45, 2718–2743, 1988.

Lenters, J. and Cook, K. H., On the origin of the Bolivian High
and related circulation features of the South America climate, J.
Atmos. Sci., 54, 656–677, 1997.
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