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Abstract. Further analysis of energetic electron preci-
pitation at the evening sector of magnetosphere is
performed. In the framework of the quantitative model
of cyclotron wave-particle interactions developed in the
previous Pasmanik et al. paper, the case of ®nite spread
over energies of initial energetic electron distribution is
studied. The solution for distribution function of ener-
getic electron is found. The energetic spectrum of
trapped and precipitating electrons and whistler wave
spectrum are analysed.
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1 Introduction

This work is devoted to the problem of the cyclotron
wave-particle interactions in the magnetosphere. In
particular, the quantitative model for whistler mode
wave and energetic particle interactions in the Earth's
radiation belts with real particle and wave sources taken
into account is studied. The development of such a
model is really important, because many experimental
data on energetic particles and waves in the magneto-
sphere have now been accumulated.

In a previous paper (Pasmanik et al., 1998) the
formation of a zone of energetic electron precipitation
during magnetic storm was analysed in the framework
of the quasi-linear theory of cyclotron instability. As a
source of energetic particles Pasmanik et al. (1998)
considered the magnetic drift, following injection at the
nightside of the magnetosphere. However, it was

thought that the injected electrons had a small spread
over energies and the wave spectrum was not analysed.

In this work we have performed further development
of that model. In particular, we have generalised
previously obtained results for the case of arbitrary
initial distribution of energetic particles over energy and
found the spectrum of generated waves.

The work is organised as follows: the basic equations
of the developed model are presented in Sect. 2, their
analytical solution is given in Sect. 3 and results of nu-
merical analysis of this solution are discussed in Sect. 4.
A conclusion is formulated in Sect. 5.

2 Basic equations

Let us consider the development of cyclotron instability
due to the interactions between whistler mode waves and
energetic electrons, which enter the region with en-
hanced background plasma density by their longitudinal
drift. Such a region may be found at the plasmapause or
when detached cold plasma clouds formed on the
recovery phase of magnetic storm.

As basic equations we use the set of self-consistent
equations of the quasi-linear theory of cyclotron insta-
bility, including the equation for distribution function of
energetic electrons F and spectral density ex of whistler
mode waves. In the case of dense background plasma
when the parameter b? � x2

pLv20=x
2
BLc2 � 1, most wave

energy occurs at low frequencies x � xBL=b? � xBL and
pitch angle di�usion prevails. Here xBL and xpL are the
electron gyro- and plasma frequency at the equatorial
plane, v0 is characteristic velocity of energetic electrons,
c is the velocity of light. In this case the basic equations
can be written in the following form (Pasmanik et al.,
1998):
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The ®rst equation is averaged over electron bounce
oscillations between magnetic mirror points. The term
on the left side in Eq. (1) describes the longitudinal
magnetic drift of energetic electrons, where u is the
azimuthal angle, XD is angular magnetic drift velocity,
Tb �

H
dz=vk is electron bounce period, vk and z are

velocity components and coordinates along magnetic
®eld line. Magnetic moment l � sin2 HL, where HL is
pitch angle at the equatorial plane. The last term in Eq.
(1) corresponds to the particle losses through the loss
cone, the coe�cient d is de®ned as

d � 0 l � lc
d0 � v=l 0 � l � lc

�
; �3�

where lc � Lÿ3�4ÿ 3Lÿ1�ÿ1=2 is the loss cone boundary
for the dipolar magnetic ®eld, v is the electron velocity,
and l is the length of the magnetic ¯ux tube. The
di�usion coe�cient D is determined by the wave
intensity ex and can be written as (Pasmanik et al.,
1998):

D � V �v2� ~D � V �
ZxBL

xm0

G1ex dx ; �4�

where,

V � 4pe
mcv

� �2

; G1 � leff
k

: �5�

Here k is the wave vector of whistler wave and leff is the
e�ective length of the whistler-electron interaction
region near the equator; generally it depends on wave
frequency and electron velocity (see Bespalov and
Trakhtengerts, 1986), but under the conditions men-
tioned here we may consider leff � const.

In the energy transfer Eq. (2) the term cex describes
the energy source for whistler waves, and c is the growth
rate of the cyclotron instability. Two other terms
corresponds to losses due to the imperfect re¯ection
from the ionosphere (the term mex; m is the e�ective
damping rate) and wave propagation away from the
generation region across the magnetic ®eld due to
refraction (the term vg? @ex

@r?
). In Eq. (2) vg? and r? are

the components of whistler mode group velocity and the
spatial coordinate perpendicular to the magnetic ®eld
respectively. It should be remembered that the main
propagation term along the magnetic ®eld vgk @ex

@z has
been removed by averaging over the oscillations of
wave-packets between conjugate ionospheres.

Further, we consider a one-dimensional problem and
make dr? � R0L du, where R0 is the Earth's radius.

The growth rate c is found from the linear theory of
cyclotron instability and can be written as (Bespalov and
Trakhtengerts, 1986),

c � 1
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where lm � 1ÿ �xBL=kv�2; Tg �
H
dz=vgk is period of

wave-packet oscillations between conjugate ionospheres,

and the electron distribution function is normalised by
the relation:

N � plÿ1c

Z1
0

Z1
0

TbFv3 dl dv : �7�

Here N is the number of electrons in the magnetic ¯ux
tube with unit cross-section in the ionosphere.

The self-consistent system of Eq. (1) and (2) must be
completed by the boundary conditions, which take the
form:

u � 0 : ex � ex0; F � F0�l�
l � 0; 1 : l

@F
@l
� 0 :

�8�

3 Solution in the cases of strong and weak di�usion

Following Pasmanik et al. (1998) we shall consider two
cases corresponding to strong and weak pitch angle
di�usion. The criterion of di�usion regime is ratio of the
loss cone ®lling time in the process of pitch angle
di�usion to the time required to empty the loss cone.
This ratio is equal to

K � D
lcTbd0

� D
1:5lc

; �9�

K � 1 for strong di�usion and K � 1 in the weak
di�usion case.

According to Pasmanik et al. (1998) in both cases
solution of Eq. (1) is found from the equation without
loss term dF
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where V and ~D are determined by Eq. (5). The losses are
taken into account by the multiplier exp (ÿD � u) in the
storng di�usion case, where D � d0lc=XD, and by
changing boundary condition for Eq. (10) at the edge
of loss cone l � lc, which is written as F �l � lc;u� � 0
in the case of weak di�usion.

In contrast to Pasmanik et al. (1998), we suggest a
®nite spread of initial distribution function over velo-
city. Then we have to consider the dependencies of
parameters in Eq. (10) on velocity. Taking into account
that XD / v2, and Tb / vÿ1 (see Lyons and Williams,
1984) we obtain:

@F
@n
� W �v� @
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where W �v� � v30=v3; the new variable n is de®ned by the
relation

dn � H�u�du ; �12�
the coe�cient H�u� � �D=XDTb�v�v0 , v0 is the velocity
characteristic value.
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The solution of Eq. (11) can be written as

F �
X

k

Ak�v�Zk�l� exp�ÿkkW �v�n�; �13�

where Zk and kk are eigenfunctions and eigenvalues of
di�usion operator. The sets of Zk and kk depend on the
di�usion regime (Pasmanik et al., 1998). The coe�cient
Ak is given by:

Ak�v� �
�Z1
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F0�l; v�Zk�l� dl
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0
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�ÿ1
�14�

and depends here on v.
Substituting the solution for distribution function

(13) into Eq. (6) we obtain the following expression for
the growth rate c�n;x�:

c � c0
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Here we took into account that for x� xBL the wave
vector for whistler waves is written as

k2 � xx2
p

xBc2
; �19�

and ncL is the plasma density at the equatorial plane.
The expression for spectral wave density ex can be

found by integrating Eq. (2) and is written in the form

ln
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� �1
2

ÿC2�n� x
xBL

� �3
2

ÿmu�n� ; �20�

where

C1;2�n� � c0XDTb
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0
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D

dn : �21�

This solution can be used to ®nd the di�usion
coe�cient D�u�. But the equation for D�u� which
appears after substitution of Eqs. (20)±(21) into Eq.
(4) is too complicated. To simplify this equation we use
some properties of the spectral density ex and growth
rate c, which follow from their dependencies on
frequency.

According to Eqs. (15) and (20) the functions ex�x�
and growth rate c�x� have one maximum. From
numerical analysis we found that the growth rate

depends on the frequency more smoothly then the wave
spectral density while the locations of maxima are close
to each other. Hence, integrating both parts of Eq. (2)
over x with the weighting function G1 and using Eq. (4)
it is possible to obtain a simpli®ed equation for the
di�usion coe�cient D. Taking into account the proper-
ties of ex and c discussed we may carry c away from the
integral, and consider its value at the maximum:
x � xm�n� � xHLB1=3B2. The resulting equation has
the form

vg?
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3
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and m0 are values under x � xm.
Using the expression (12) this equation is reduced to
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with a � R0L=vg?, and its solution

H�n� � H0 �
Zn

0

cm�n� dnÿ am0n; �24�

where H0 � �D0=XDTb�v�v0 de®ned from the initial
conditions. This expression may be used to acquire
dependence u�n�.

4 Numerical analysis

This section devoted to the numerical analysis of
solution of Eq. (13), (15), (20) and (24).

In the numerical simulations we examined evolution
of the energetic electron distribution over velocities (Fv),
the wave spectral density (ex) and ¯uxes of trapped (Str)
and precipitating (Spr) particles along the longitudinal
coordinate u. The particle ¯uxes are de®ned as following
(Pasmanik et al. 1998): the ¯ux density of precipitating
particles is equal to

SS
pr � 2p

Z1
0

F S�lc; v�v3 dv �25�

in the case of strong di�usion and

SW
pr � p

Z1
0

D
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@l

� �
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v3 dv �26�

in the case of weak di�usion; the ¯ux density of trapped
particles is

SS;W
tr � 2pb

Z1
0

v3 dv
Z1=b

lc

F S;W �l; v�dl �27�

in both cases.
The initial distribution function of energetic electrons

was chosen in the form

F0�l; v� � b�lÿ lc� � exp
�vÿ v0�

Dv

� �2

; �28�

D. L. Pasmanik, V. Y. Trakhtengerts: Spectral characteristics of waves and particles 353



where b � S0Lpÿ
1
2�v30Dv�ÿ1 is the normalising constant,

and S0L is the initial ¯ux of energetic electrons at the
equatorial plane.

The evolution of the distribution function of trapped
particles over velocity at the equatorial plane is shown in
Figs. 1 and 2 for the cases of strong and weak di�usion
respectively. It is seen, that in both cases of strong and
weak di�usion the amplitude of the distribution func-
tion is decreasing, with some shift of maximum location.
The location of maximum is shifting to bigger values of

velocity because di�usion coe�cient depends on v as
D / vÿ2, thus at ®rst electrons with small energy values
reach the loss cone. The shift in the weak di�usion
regime is bigger because in this case the loss cone
empties immediately, while in the case of strong di�u-
sion loss time depends on the electron velocity according
to Eq. (3).

Examples of ¯uxes of trapped and precipitating
electrons are presented in Figs. 3±4 as functions of u
for di�erent Dv values in cases of strong (Fig. 3) and
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Fig. 1. The transformation of energetic electrons distribution over
energy F �v� with increase in u in the strong di�usion case at
equatorial plane. Dv=v0 � 0:6; mv20=2 � 50 keV; lÿ1c � 160;
Dmaxlÿ1c � 8; vg? � 102km=s; ln�Dm=D0� � 10; m0=cm�0� � 0:01;
u0 � 0, u1 � 0:18�, u2 � 0:2�, u3 � 0:32�, u4 � 0:5�
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Fig. 2. The transformation of energetic electron distribution over
energy F �v� with increase in u in the weak di�usion case at equatorial
plane. Dv=v0 � 0:6; mv20=2 � 50 keV; lÿ1c � 160; Dmaxlÿ1c � 0:5;
vg? � 102km=s; ln�Dm=D0� � 10; m0=cm�0� � 0:01; u0 � 0,
u1 � 7:8�; u2 � 8:9�; u3 � 14:5�; u4 � 20:5�
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Fig. 3a, b. The dependence of ¯uxes of trapped and precipitated electron on u for strong di�usion for di�erent initial spread over energies:
a Dv=v0 � 0:3; b Dv=v0 � 0:6; other parameters are as in Fig. 1
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weak (Fig. 4) di�usion. Qualitatively these dependencies
are similar with changing of the initial velocity spread
(Dv=v0 value) (compare also with results for d-function
by Pasmanik et al., 1998). The dependencies of particle
¯uxes at low attitudes (curves Str2 and Spr) become
smoother, with increase of Dv=v0, and their maximum
values decrease and maximum locations shift to a bigger
u value. The energetic spectra of electron ¯uxes at low
altitudes are given in Fig. 5 for strong di�usion and in
Fig. 6 for weak di�usion.

The results of numerical analysis of the wave
spectrum are presented in Figs. 7±8 for strong and
weak di�usion regimes respectively. The sharp changes
of the growth rate and wave spectral density as
functions of frequency with strong di�usion are due to

the process of fast isotropisation of the distribution
function. It is clear that since the distribution of
energetic particles are close to isotropic, the wave
generation stops and the growth rate c has a negative
value in almost all frequency ranges. Another situation
is with weak di�usion when the energetic electron
distribution is always su�ciently anisotropic and the
growth rate c is always positive at low frequencies.

However, there are some di�culties in describing the
transition between the cases of strong and weak di�u-
sion. It is obvious that for weak di�usion the condition
K � 1 is satis®ed for all particles at any point on u axis.
With strong di�usion the situation is di�erent. Since
K / H�u�vÿ2 the strong di�usion condition K � 1 is
not satis®ed for particles with an energy greater than
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Fig. 4a, b. The dependence of ¯uxes of trapped and precipitated electrons on u for weak di�usion for di�erent initial spread over energies:
a Dv=v0 � 0:3; b Dv=v0 � 0:6; other parameters are as in Fig. 2
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Fig. 5a, b. Energetic spectrum of a trapped and b precipitating energetic electron ¯ux at low altitude for strong di�usion for di�erent u values.
Dv=v0 � 0:6; u1 � 0:18�; u2 � 0:2�; u3 � 0:32�; u4 � 0:5�; other parameters are as in Fig. 1
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some critical value. Moreover due to the decrease of
H�u� value as u increases the value of critical energy is
also decreasing. Thus, a gradual transition from strong
to weak di�usion regime occurs which may cause
su�cient changes in the wave spectrum and precipita-
tion process.

One way to take into account this transition is the
following: for most particles the condition K � 1 is
satis®ed, and the solution for di�usion coe�cient is
obtained from the strong di�usion regime. Then it is
possible to use this di�usion coe�cient to ®nd the
solution for distribution function in cases of both strong

and weak di�usion and the boundary is determined
from the relation K�u� � 1. But in an arbitrary case this
method can be used only at the beginning of transition
to a weak di�usion regime.

5 Conclusions

We have performed a further analysis of theoretical
model of cyclotron wave-particle interactions allowing
us to explain some quantitative characteristics of
trapped and precipitating energetic particle ¯uxes ob-

S
/S

0L
tr

S
/S

0L
pr

a b
2.5 2.52.0 2.01.5 1.51.0 1.00.5 0.50 0

v/v0 v/v0

2 2

3

3

4

4

1 1

0

0.002

0.004

0.006

0.008

0.010

0

0.001

0.002

0.003

Fig. 6a, b. Energetic spectrum of a trapped and b precipitating energetic electron ¯ux at low altitude for weak di�usion for di�erent u values.
Dv=v0 � 0:6; u1 � 7:8�; u2 � 8:9�; u3 � 14:5�; u4 � 20:5�; other parameters are as in Fig. 2

Fig. 7. The dependencies of growth rate (lines with dots) and intensity
on frequency for strong di�usion for di�erent u values Dv=v0 � 0:6;
u1 � 0:18�; u2 � 0:2�; u3 � 0:32�; other parameters are as in Fig. 1

Fig. 8. The dependencies of growth rate (lines with dots) and wave
intensity on frequency for weak di�usion for di�erent u values
Dv=v0 � 0:6; u1 � 7:8�; u2 � 8:9�; u3 � 14:5�; u4 � 20:5�; other
parameters as in Fig. 2
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tained from experimental data (see for example Yahnina
et al., 1996; Titova et al., 1997). Consideration of ®nite
spread of energetic particles over energies and studying
the wave spectrum provides a wider area of application
of this model to the analysis of experimental data.

The investigation performed revealed new features
which distinguish regimes of strong and weak di�usion.
Namely, we found that with growth of the longitudinal
coordinate the maximum of growth rate shifts rapidly to
low frequencies for strong di�usion, and stays near the
same location in weak di�usion regime. This causes a
su�ciently di�erent evolution of wave spectrum. On the
other hand, energetic spectrum of particle ¯uxes at low
altitudes moves to higher energies for weak di�usion,
and remains actually at the same energies for strong
di�usion.

As a further development of the model considered it
would be useful to study more carefully the transition
from strong to weak di�usion. Also it is necessary to
improve the wave energy transfer equation by consid-
ereing the strict model for whistler wave propagation
near the plasmapause, which serves as a wave-guide.
This is an important problem, which includes the
analysis of the eigenmodes' spatial structure as well as
the refraction of group rays across the plasmapause
wave-guide, and demands special consideration.
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