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Abstract. The ®rst-order perturbation approximation is
applied to calculate the rate coe�cients of vibrational
energy transfer in collisions involving vibrationally
excited molecules in the absence of non-adiabatic
transitions. The factors of molecular attraction, oscilla-
tor frequency change, anharmonicity, 3-dimensionality
and quasiclassical motion have been taken into account
in the approximation. The analytical expressions pre-
sented have been normalized on experimental data of
VT-relaxation times in N2 and O2 to obtain the steric
factors and the extent of repulsive exchange potentials in
collisions N2-N2 and O2-O2. The approach was applied
to calculate the rate coe�cients of vibrational-vibra-
tional energy transfer in the collisions N2-N2, O2-O2 and
N2-O2. It is shown that there is good agreement between
our calculations and experimental data for all cases of
energy transfer considered.

Key words. Ionosphere (Auroral ionosphere; ion
chemistry and composition). Atmospheric composition
and structure (Aciglow and aurora).

Introduction

Vibrational excitation of atmospheric molecules is im-
portant for the thermal structure of the atmosphere and
may signi®cantly change the chemical structure through
modi®cation of the normal reaction rates. Whereas the
rotational and translational modes of the molecules with
short relaxation times may be equilibrated during atmo-
spheric disturbances (auroral precipitation, arti®cial
heating etc.), the vibrational degrees of freedom will

de®nitely not be equilibrated, thus enhancing the chem-
ical activity of atmospheric components.

The reactions involving vibrationally excited mole-
cules are believed to be faster than the corresponding
ground level reactions, because they occur on potential
energy surfaces which have little or no activation
barriers and are highly exothermic (Rusanov and
Fridman, 1984). When the vibrational temperature of
the molecular atmospheric components is su�ciently
enhanced, the rates of reactions

O�N2 ! NO�N �1�
N�O2 ! NO�O �2�
may be greatly increased causing e�ective NO produc-
tion in thin layers during auroral beam-plasma instabil-
ities (Mishin et al., 1989; Aladjev and Kirillov, 1995,
1997). The e�ect of selective reactant excitation on the
rates of chemical reactions has been shown by Eyring
et al. (1980), and Smith (1980). With an activation
barrier displaced into the ``exit valley'' of the potential,
vibrational energy was again found to promote reaction
much more e�ectively than relative translational energy.

Also vibrationally excited molecules play a signi®cant
role in the ionic chemistry and thermal balance of the
upper atmosphere. For example, the chemistry of ion
O� in F-region of the ionosphere is very dependent on
the vibrational temperature of ionospheric components.
Nonlinear theory of the production of main ionospheric
maximum was developed by Richards and Torr (1986),
and Vlasov and Izakova (1989). It was found that
enhanced vibrational excitation of atmospheric compo-
nents results in the increase of O� losses and the
decrease of electron concentration. The collisions of
excited N2 with thermal ionospheric electrons promote
the heating of the electron gas and, under conditions of
enhanced F region electron densities, N2 may act as a
small net source of electron thermal energy (Richards
et al., 1986).

An understanding of rates of di�erent plasma-chem-
ical processes involving excited molecules helps toCorrespondence to: A. Kirillov
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explain the role of vibrationally excited particles in the
balances of ionospheric plasma because the ionospheric
components can be excited to high vibrational levels
during natural and arti®cial atmospheric disturbances.
The classical, semiclassical, quasiclassical and exact
quantum mechanical models developed to calculate the
energy transfer in nonreactive vibrational-translational
and vibrational-vibrational molecular collisions have
been reviewed in Rapp and Kassal (1969), Nikitin
(1974a, b), Nikitin and Osipov (1977) and Billing (1986).
The purpose of this study is to show that the ®rst-order
perturbation approximation (FOPA) of the calculation
of energy transfer between molecules in the absence of
non-adiabatic transitions gives the TV, VT, VV and
VV0-coe�cients corresponding to the experimental data
if the factors of molecular anharmonicity, frequency
shift, attraction etc. are included. The present method is
applicable to transitions involving the exchange of one
or more quanta. Application is made to the N2-N2, O2-
O2, N2-O2 molecular collisions.

Vibrational-translational energy transfer
(TV and VT-process)

The basic model for the investigation of vibrational-
translational energy transfer is the collinear collision
between a oscillator and an incident particle interacting
through a repulsive exponential potential. Let us
consider the collinear collision of harmonic oscillator
AB and a structureless particle C, shown in Fig. 1. The
harmonic oscillator AB has the classical oscillator
frequency x, and the repulsive interaction potential
between the atom C and the nearest atom of the
harmonic oscillator, B, is assumed to be exponential.
The Hamiltonian of the interaction is equal to:

H � P 2
R

2l
� p2r
2M
�Mx2�r ÿ re�2

2
� A0 exp�ÿa�R� kr�� ;

�3�
in which R is the distance between C and the AB centre
of mass, r, the oscillator coordinate, is the separation of
A and B, re is the equilibrium value of r, PR and pr are
the conjugate impulses, M is the oscillator reduced mass
mAmB=�mA � mB�, l is the reduced mass of C on AB, or
�mA � mB�mC=�mA � mB � mC�, mA;mB;mC are the mass-
es, respectively, of atoms A, B, C, A0 and a are constants
determining the amplitude and the range of intermolec-

ular forces, k � mA=�mA � mB�. We suggest that the
relative velocity of AB and C at t � ÿ1 has the value m.

For calculational purposes, it is convenient to de-
®ne the dimensionless quantities z � aR� z0,
x � a�r ÿ re��M=l�1=2, s � xt (Nikitin, 1974b). Then
the Hamiltonian Equation (3) becomes in the classical
case

HCL � E0
_z2

2
� _x2

2
� x2

2
� exp�ÿz� ����

m
p

x�
� �

; �4�

where
E0 � lx2=a2; exp�z0 � akre� � E0=A0;m � k2l=M . The
equations of translational and vibrational motions for
the system can be shown to be:

�z � exp�ÿz� ����
m
p

x� �5�
�x� x� ����

m
p

exp�ÿz� ����
m
p

x� � 0 : �6�
Since x� 1, one can perform an approximate integra-
tion of Eq. (5) and (6) neglecting x in the exponential
term. The result of the integration is

exp�ÿz� � Ez sech2
�����
Ez

2

r
s

 !
�7�

DECL
TV

E0
� lim

s!1
m
2

����� Z
s

ÿ1
exp�ÿz�s�� sin�sÿ s�ds

����2

�
���� Z

s

ÿ1
exp�ÿz�x�� cos�sÿ s�ds

����2�
� 4mEz�pn � csch�pn��2 : �8�

Here it is suggested that the oscillator was not excited
originally, Ez � a2m2=2x2 is the energy of relative
motion on in®nite distance at s � ÿ1 for unity reduced
mass of AB and C, n � x=am � �2Ez�ÿ1=2 � 1 is the
Massey factor.

The expression (8) is identical with the energy
amount which can be obtained from an approximate
semiclassical calculation (Rapp and Kassal, 1969). In
the semiclassical calculation, the molecule AB is treated
as a quantum mechanical system with discrete vibra-
tional levels. The relative translational motion of the
molecule and the particle C is treated classically, see
Eq. (7).

The possibility of vibrational-translational energy
transfer (TV or VT-process from vibrational level n to
m) calculated according to the semiclassical FOPA is
equal to

P SC
nm � jrnmj2 1

�h

Z
F �t� exp�ixnmt�dt

���� ����2 ; �9�

where �h is Planck constant, �hxnm � jEn ÿ Emj;En and Em
are the energies of vibrational levels n and m, F �t� is the
power acting on the oscillator,

rnm �
Z

Wn�r ÿ re�Wmdr ; �10�
Fig. 1. The collinear collision of the molecule AB and a particle C
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where Wn, Wm are the wave function of levels n and m.
For the harmonic oscillator

jrn;n�1j2 � �n� 1�jr01j2 � �n� 1� �h
2Mx01

and the possibility of n$ n� 1 energy transfer is
proportional to that of 0$ 1:

P SC
n;n�1 � �n� 1�P SC

01 : �11�
It can be shown that the energy calculated according to
Eq. (8) is related to the semiclassical possibility:

DECL
TV � P SC

01 �hx01 :

Kelley and Wolfsberg (1966) have calculated the
classical energy transfer to the oscillator by two meth-
ods. The approximate procedure neglected the e�ect of
the oscillator motion on the external collisional motion
in coordinate R. The exact procedure has taken into
account the in¯uence of the oscillator motion on the
external collisional motion. It was found that the ratio
of approximate and exact energy transfers is not equal
to unity and depends only on m:

< � exp�1:685m� : �12�
Secrest and Johnson (1966) presented an exact

quantum-mechanical solution for vibrational-transla-
tional transition probabilities in the collinear collision of
a particle with a harmonic oscillator. They have found
that their results did not reduce to the ®rst-order
distorted-wave approximation (FODWA) and the prob-
abilities of Secrest and Johnson (1966) appear to be
proportional (but not equal) to the probabilities of
FODWA.

Rapp and Kassal (1969) believed that the reason for
the failure of the FODWA is intimately related to the
failure of the approximate classical calculations of
Kelley and Wolfsberg (1966). This is the quantum-
mechanical analogy of the classical approximate proce-
dure, because the wave function in coordinate r is totally
independent of coordinate R. Therefore, the FODWA
must fail to agree with the exact quantum-mechanical
calculations to the same extent that the approximate
classical calculations fail to agree with the exact classical
calculations.

The factor (12) may be regarded as a correction
factor for the usual FODWA transition probabilities
and approximate classical calculations. It is also inter-
esting to note that the revised FODWA given by Mies
(1964) leads to a correction factor expressible as
�1ÿ m� . . .�.

As was pointed out in Nikitin (1974a, b), Nikitin and
Osipov (1977) and Nikitin et al. (1989), the disagreement
of the approximate calculation of energy transfer with
the exact one is reduced in the classical case if the
frequency shift factor is taken into account. Let us
consider the approximate equation of oscillator motion
with the frequency shift (obtained from the Hamiltonian
Equation (4)):

�x� �1ÿ ����
m
p

x0�x � �1ÿ
����
m
p

x0�x0 ; �13�

in which the place of potential energy minimum x0 is
determined by the expression

x0 �
����
m
p

exp�ÿz� ����
m
p

x0� � 0 : �14�
The comparison of TV-energy transfer for the case of
oscillator frequency change with the expression (8)
(Nikitin 1974a, b; Nikitin and Osipov, 1977; Nikitin
et al., 1989) gives the factor

fsh � J21 �2
����
m
p �

m
: �15�

Here J1 is the Bessel function. When the mass factor m is
less than about 1=2, the approximate formula

fsh � 1ÿ m
2

� �2
�16�

may be used.
The formula (16) can be obtained if Green's method

is applied to calculate the net amount of vibrational
energy transferred to the oscillator (Kirillov, 1997).
Green's function of the Eq. (13) is equal to Baz et al.
(1971):

G�s; s� � �f�s�f��s� ÿ f��s�f�s��=W �f; f�� ; �17�
where the solution of homogeneous Eq. (12) is

f�s� � eis 1� im

�����
Ez

2

r
tanh

�����
Ez

2

r
s

 !" #
�18�

and

W �f; f�� � _ff� ÿ _f�f : �19�
The integration of the product of the function on the
right side of (13) and Green's function (17) leads to the
factor (16) (Kirillov, 1997).

To obtain the averaged possibility of vibrational-
translational energy transfer m � 0$ m � 1, the expres-
sion (8) must be integrated over a normalized Maxwell
distribution of relative collision velocities along the line of
centres. The resulting averaged transition probability is

P SC
01


 � � ZmZtr ;

where the vibrational and translational factors Zm and Ztr
are as follows:

Zm � k2
l
M
2p2H
H0

; �20a�

Ztr �
������
2p
3

r
H0

pH

� �2 H0

T

� �1=6
exp ÿ 3

2

H0

T

� �1=3" #
; �20b�

H0 � 4p2x2
01l

a2k
; H � �hx01

k
:

Here k and T are the Boltzmann constant and the
translational temperature.

The calculation of vibrational-translational energy
transfer could be easily extended to the case of an
anharmonic oscillator by replacing the harmonic AB
wave functions by anharmonic wave functions where the
frequency for the transfer n$ n� 1 is equal to
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xn;n�1 � x01�1ÿ 2xen� ; �21�
where xe is the anharmonic constant. Taking into
account the frequency reduction in (21) and the
dependence of translational and vibrational factors Ztr
and Zm on the frequency of the transfer (20a, b), one can
obtain the correction factor in the n$ n� 1 energy
transfer for the anharmonic oscillator:

fan � exp 2xen
H0

T

� �1=3" #
1ÿ 8

3
xen

� �
: �22�

The expression (20b) was obtained for the repulsive
exponential potential. In fact, there is an e�ect of a long-
range attractive potential on the energy transfer. A
procedure for the determination of the e�ect of attrac-
tion was suggested in Nikitin (1974a). To obtain the
factor of this attraction we have used the relation
between interaction times s00, s0 with and without the
attraction, respectively, following Nikitin (1974a):

s00 � s0 1ÿ 2

p

����
e
E

r� �
; �23�

where E is the relative energy of the molecule and the
particle at in®nite separation before collision and e is the
depth of the potential well. Place the Eq. (23) into the
expression for a probability of oscillator excitation,
(proportional to exp�ÿ2pn� in adiabatic collisions
according to Eq. (8)), and average over the Maxwell
distribution. The integrated function in this case is
Nikitin (1974a):

f �y� � exp ÿy ÿ 2c���
y
p
� �

1ÿ C���
y
p

� �� �
; �24�

where

C � 2

p

������
e

kT

r
; y � E

kT
; c � pn :

The function (24) has its maximum near the exponential
extremum and the integration over the Maxwell distri-
bution yields the factor exp�ÿ3c2=30 � 2Cc1=30 �, where
c0 � y3=20 (Kirillov, 1997). So the factor of the attraction
is equal to:

fat � exp
2

p

������
2e
kT

r
H0

T

� �1=6
1ÿ 2xen

3

� �" #
: �25�

The exponential power in Eq. (25) is
p
2 greater than the

one obtained in Nikitin (1974a).
Although the one-dimensional collision study leads

to a functional form of the transition probabilities, it is
necessary to estimate the possibility of vibrational-
translational energy transfer for 3-dimensional case, as
made by Schwartz and Herzfeld (1954), Calvert and
Amme (1966), and Hansen and Pearson (1970). The
three-dimensional model is needed to ®t both the slope
and the absolute magnitude of the experimental relax-
ation rates to our theoretical estimations. In this study
the treatment of 1-dimensional calculation is extended
to a collision in three dimensions by introducing the
steric factor Pst.

The ®rst e�ect of the 3-dimensionality results from
the necessity of taking into account the contributions of
non-collinear collisions. Since the collision of the mol-
ecule AB with the particle C may not be linear, a
consideration of the e�ect becomes necessary. The
second important e�ect accounted for by the factor Pst
is caused by the non-zero-impact parameter collisions. It
is obvious that an accurate prediction of the value of the
steric factor Pst is practically impossible.

If the vibration is treated as if it is a breathing
vibration in a nearly spherical molecule, one may expect
for the diatomic molecule, that the value Pst for
vibrational-translational transition probability is equal
to hcos2�h�i � 1=3 where h is the angle between molec-
ular axis and R (Schwartz and Herzfeld, 1954; Billing,
1986). The conclusion is based on the suggestion of very
weak interaction at angles h � p=2. Quantum-mechan-
ical calculations of the real potential surfaces show
stronger angular interaction at h � p=2 than in the case
of the pairwise potential (Nikitin et al., 1989). So, in
fact, one may expect greater magnitudes of Pst.

Thus, the transition probability for the binary
collision in which target molecule AB undergoes a VT
or TV-transition n$ n� 1 upon the impact of an
incident particle C is as follow:

hPn;n�1i � �n� 1�PstfanfatfshZvZtrfqu ; �26�

where all factors (11), (15), (20a), (20b), (22), (25) have
been taken into account and the value of quasiclassical
factor

fqu � exp � �hxn;n�1
2kT

� �
�27�

can be obtained in the case of quasiclassical consider-
ation (Landau and Lifshitz, 1965; Nikitin, 1974a). Signs
� and ÿ are to be used for VT and TV-processes,
respectively. The rate coe�cient of vibrational-transla-
tional energy transfer n$ n� 1 can be described by the
equation:

kn;n�1 � Pn;n�1

 � ��������

8kT
pl

s
pR2

0 ; �28�

where R0 is the gas-kinetic radius of the collision.

Vibrational-vibrational energy transfer
(VV and VV0-process)

The simple FOPA calculation can be extended to the
case of vibrational-vibrational energy transfer between
molecules. Let us consider two diatomic molecules AB
and CD colliding head-on (Fig. 2). As in a previous
section, the intermolecular potential is assumed to be
purely repulsive between B and C, in analogy to
previous calculation of vibrational-translational energy
exchange. The Hamiltonian of the interaction is equal to
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H � P 2
R

2l
� p2r1
2M1
�M1x2

1�r1 ÿ r1e�2
2

� p2r2
2M2
�M2x2

2�r2 ÿ r2e�2
2

� A0 exp�ÿa�R� k1r1 � k2r2�� ; �29�
in which the distance between centres of mass of AB
and CD is R, the respective oscillator coordinates in AB
and CD are r1 and r2; r1e and r2e are the equilibrium
separations in AB and CD, PR; pr1; pr2 are the conjugate
impulses,

M1 � mAmB=�mA � mB�;M2 � mCmD=�mC � mD�;
l is the reduced mass of CD on AB, or �mA � mB�
�mC � mD�=�mA � mB � mC � mD�;mA;mB; mC ;mD are
the masses, respectively, of atoms A, B, C, D,
k1 � mA=�mA � mB�; k2 � mD=�mC � mD�. As in the case
of vibrational-translational calculation we suggest that
the relative velocity of AB and CD at t � ÿ1 has the
value m, but the oscillator CD is initially vibrationally
excited and the energy of the vibration is

Evib2 � M2x2
2�r2max ÿ re�2

2
� �hx2 :

Using the dimensionless quantities z � aR� z0; x1
� a�r ÿ r1e��M1=l�1=2; s � x1t, we obtain the following
approximate expression for the Hamiltonian (29) in the
classical case:

HCL � E0
_z2

2
� _x21

2
� x21

2
� �hx2

E0
� exp�ÿz� ����

m
p

x1�
�
1� B cos

x2

x1
s� d

� �� ��
; �30�

where we neglect the energy loss of the CD oscillator
and use for the amplitude of the CD vibration
k2a�2�h=M2x2�1=2 � B� 1, and we have E0 � lx2

1=a
2;

exp�z0 � a�k1r1e � k2r2e�� � E0=A0;m � k21l=M ; d is the
phase of CD oscillation at t � 0.

The equation of vibrational motion of the AB
molecule is

�x1 � x1 �
����
m
p

exp�ÿz� ����
m
p

x1�

1� B cos
x2

x1
s� d

� �� �
� 0 �31�

and taking into account the expression for translational
motion (7) the vibrational-vibrational energy transfer
can be obtained as

DECL
VV

E0
� lim

s!1
m
2

B2

4����� Z
s

ÿ1
exp�ÿz�s�� sin�sÿ s� cos x2

x1
s� d

� �
ds

����2

�
���� Z

s

ÿ1
exp�ÿz�s�� cos�sÿ s� cos x2

x1
s� d

�
ds

� ����2�
� mB2Ez�pn � csch�pn��2 ; �32�

where Ez � a2m2=2x2
1 and n � �x2 ÿ x1�=am.

The energy amount in Eq. (32) can be calculated
according to semiclassical FOPA. The approximation
gives the following expression for VV and VV¢ energy
transfer:

Qmm0SC
nn0 � rnn0j j2 rmm0j j2 1

�h

Z
F �t� exp�ixmm0

nn0 t�dt

���� ����2 ; �33�

�hxmm0
nn0 � En � Em ÿ En0 ÿ Em0j j ;

where En;Em are the vibrational energies of AB and CD
before the collision and En0 ;Em0 are the ones after the
collision. The calculation of the integral in Eq. (33) leads
to the expression

Qmm0SC
nn0 � ZAB

nn0Z
CD
mm0

8l

�h2a2
lm2

2
�pn � csch�pn��2 : �34�

Here the vibrational factors are

ZAB
nn0 � a2k21 rAB

nn0
�� ��2 ; ZCD

mm0 � a2k22 rCD
mm0
�� ��2 : �35�

As in the case of VT-energy transfer there is the relation
of classical and semiclassical calculations

Q10SC
01 �hxAB

01 � mB2Ez�pn � csch�pn��2E0 � DECL
VV :

To obtain the factor of frequency shift for VV and
VV0-energy transfer one has to consider Eq. (13) but
here the minimum of potential surface is determined
from the equation

x0 �
����
m
p

exp�ÿz� ����
m
p

x0� 1� B cos
x2

x1
s� d

� �� �
� 0 :

Green's function of Eq. (13) is similar the one calculated
according to Eqs. (19±21), since the amplitude of CD
oscillations in small B� 1. The integration of Eq. (13)
for vibrational-vibrational energy transfer leads to the
factor (16).

The integration of Eq. (34) over the Maxwell distri-
bution gives the expression

Qmm0SC
nn0

D E
� ZAB

nn0Z
CD
mm0

8lkT

�h2a2
F �c� ; �36a�

F �c� �
Z1
0

c2csc h2
c���
y
p
� �

exp�ÿy�dy ; �36b�

c � p En � Em ÿ En0 ÿ Em0j j
�ha

������
l

kT

r
:

Fig. 2. The collinear collision of the molecules AB and CD
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The function F �c� is expressed as (Keck and Carrier,
1965):

F �c� � 1

2
3ÿ exp ÿ 2c

3

� �� �
exp ÿ 2c

3

� �
�37a�

for the quasiresonant transfer �c � 1� and

F �c� � 8

���
p
3

r
c7=3 exp�ÿ3c2=3� �37b�

for a very large resonance defect �c� 1�.
The factor of the attraction of the molecules can be

obtained as in the case of VT-calculation. The interac-
tion time according to Eq. (23) has to be inserted in the
integral (36b). For a very large resonance defect c� 1
the factor is

fat � exp�2Cc1=3� ; �38a�
and for a small resonance defect c � 0 the factor is

fat � 1� ���
p
p

C � C2 : �38b�
Thus, the FOPA transition probability for the binary

collision in which target molecule AB undergoes a VV or
VV0-transition n! n0 upon the impact of an vibratio-
nally excited molecule CD is as follows:

Qmm0
nn0

D E
� P AB

st P CD
st fatfshZAB

nn0Z
CD
mm0

8lkT

�h2a2
F �c�fqu ; �39�

where all factors (16), (36a), (36b), (37a), (37b), (38a),
(38b) have been taken into account. The value of the
quasiclassical factor is equal to

fqu � exp � �hxmm0
nn0

2kT

� �
; �40�

where signs � and ÿ are to be used for excess and defect
energy VV or VV0-processes, respectively. It is suggested
that the contribution of the di�erent orientations of the
AB and CD molecules has been included in the
multiplying of steric factors in Eq. (39). For the case
of a breathing vibration in a nearly spherical molecule,
the averaged value of the multiplying for the vibration-
al-vibrational transition probability is equal to
hcos2�h1�ihcos2�h2�i � 1=9, where h1 and h2 are the
angles between molecular axes and R (Billing, 1986). The
in¯uence of the anharmonicity will be taken into
account in the calculations of the factors fsh; fqu; F �c�
and vibrational factors (35), which depend on the
frequencies of the vibrations.

The rate coe�cient of vibrational-vibrational energy
transfer can be obtained as in the case of TV, VT-transfer
(28), i.e., by multiplying the probability (39) by the
averaged thermal velocity and gas-kinetic cross section.

Results of the calculation and the comparison
with experimental data

The expression (28) has been normalized on the experi-
mental data of VT-relaxation time in N2 and O2 from
(Millikan and White, 1963; Zabelinskii et al., 1985) to
obtain the magnitudes of steric factors and the extent of

repulsive exchange potentials. The magnitudes of e are
taken fromRadzig and Smirnov (1980) and the gaskinetic
radii of N2 and O2 molecules from Polak et al. (1973) and
Camac (1961). We use the relation of VT-relaxation time
with the rate coe�cient according to Nikitin (1974a).

The ®tted magnitudes of the steric factors are 0.73 for
N2-N2 collisions and 0.44 for O2-O2 collisions. The
®tted magnitudes of H0N2ÿN2

� 8:44 � 106 and H0O2ÿO2
�

3:16 � 106 K correspond to aN2ÿN2
� 39 nmÿ1 and

aO2ÿO2
� 45 nmÿ1. The values are in good agreement

with recent quantum-mechanical calculations 36 and 42
nmÿ1, respectively (van der Avoird et al., 1986, Wormer
and van der Avoird, 1984).

The interest in the study of relaxation processes in
gases has resulted in the accumulation of a large body of
experimental data concerning the rate constants of
vibrational energy transfer in molecular collisions. In
particular this concerns the rate coe�cients of VV and
VV0-processes in the collisions of the main atmospheric
components N2 and O2. In accordance with the formula
(39) we have calculated the rate coe�cients of VV and
VV0-energy transfers for the collisions N2-N2, O2-O2,
N2-O2. The factor of attraction has been taken into
account according to Eq. (38a) for c > �p=4�3=2 and
Eq. (38b) for c < �p=4�3=2.

In the calculation of the rate coe�cient for the
resonant process

N2�1� �N2�0� ! N2�0� �N2�1� �41�
we have used aN2ÿN2

� 39 nmÿ1. The formula obtained
for the process (41) is the following:

kN2ÿN2

VV � 0:91 � 10ÿ13 T
300

� �3=2

cm3 sÿ1 : �42�

The temperature dependence of Eq. (42) is shown in
Fig. 3. Here the experimental estimations of Suchkov

Fig. 3. The temperature dependence of the rate coe�cient for the
process N2�1� �N2�0� ! N2�1� �N2�0�: dashed line; our calcula-
tion: solid line; semiclassical trajectory calculation of Billing and
Fisher (1979), Billing (1986), experimental data of Suchkov and
Shebeko (1981): crosses; Akishev et al. (1982): stars; Valyanskii et al.
(1984a): triangle; Valyanskii et al. (1984b): square; Gordeev and
Shahatov (1995): circle
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and Shebeko (1981), Akishev et al. (1982), Valyanskii
et al. (1984a, b), and Gordeev and Shahatov (1995) for
the rate coe�cient are presented. There is good agree-
ment of the formula with experimental data of Suchkov
and Shebeko (1981), and Valyanskii et al. (1984a, b) and
some excess over the estimations of Akishev et al. (1982)
and Gordeev and Shahatov (1995). Also the semiclas-
sical trajectory calculation of Billing and Fisher (1979)
and Billing (1986) is presented in Fig. 3 showing good
agreement with two smaller experimental estimations.

In the calculation of the rate coe�cient for the
process

O2�n� �O2�0� ! O2�nÿ 1� �O2�1� �43�
we have used aO2ÿO2

� 45 nmÿ1. The formula obtained
for the process (43) is the following:

kO2ÿO2

VV � n
1ÿ nÿ1

66

PO2
st PO2

st fatfsh8:4 � 10ÿ17T 3=2

1

2
3ÿ exp ÿ 2c

3

� �� �
exp ÿ 2c

3
ÿ 17:3�nÿ 1�

T

� �
;

c � 9:76�nÿ 1�����
T
p : �44�

The dependence of the sum of rate coe�cients of VV-
processes (43) and VT-processes

O2�n� �O2�0� ! O2�nÿ 1� �O2�0� �45�
on vibrational levels n at temperature 300K is compared
with experimental data of Park and Slanger (1994) in
Fig. 4. Also the semiclassical trajectory calculations of
Billing and Kolesnick (1992) are presented here.

To calculate the rate coe�cients for N2-O2 collisions
we suppose from Billing (1994)

aN2ÿO2
� 1

2
�aN2ÿN2

� aO2ÿO2
� :

The formula means that the radius of the overall
exchange potential is the sum of short range potential
radii of colliding molecules (Nikitin et al., 1989). So the
calculated rate coe�cient is

kN2ÿO2

VV 0 � PN2
st PO2

st fatfsh5:74 � 10ÿ17T 3=2

1

2
3ÿ exp ÿ 2c

3

� �� �
exp ÿ 2c

3
� 557

T

� �
;

c � 326����
T
p ; �46�

for the VV0-process

N2�1� �O2�0� ! N2�0� �O2�1� �47�
and

kO2ÿN2

VV 0 � n�nÿ 1�
524

PN2
st PO2

st fatfsh5:74 � 10ÿ17T 3=2

1

2
3ÿ exp ÿ 2c

3

� �� �
exp ÿ 2c

3
ÿ 34:6�nÿ 18:5�

T

� �
;

c � 20:2 � jnÿ 18:5j����
T
p ; �48�

for the other VV0-process

O2�n� �N2�0� ! O2�nÿ 2� �N2�1� ; �49�
where in the calculation of vibrational factor we have
used a formula for the matrix element of multiquantum
transfer obtained by Herman and Shuler (1953) for
Morse potential approximation. The results of the
calculation according to Eqs. (46) and (48) are com-
pared with the experimental data of Gilmore et al.
(1969) and Park and Slanger (1994) in Figs. 5 and 6.
There is seen good agreement of the calculations and
experimental data for both kinds of VV0-energy transfer
in the collision of molecular nitrogen and oxygen.

Fig. 4. The dependence of the sum of rate coe�cients for the VV-
processes O2�n� �O2�0� ! O2�nÿ 1� �O2�1� and for the VT-
processes O2�n� �O2�0� ! O2�nÿ 1� �O2�0� on vibrational level
n: dashed line, our calculation: solid line, semiclassical trajectory
calculation of Billing and Kolesnick (1992): crosses, experimental data
of Park and Slanger (1994)

Fig. 5. The temperature dependence of the rate coe�cient for the VV0-
process N2�1� �O2�0� ! N2�0� �O2�1�: dashed line, our calcula-
tion; crosses, experimental data of Gilmore et al. (1969)
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The semiclassical trajectory calculation of Billing
(1994) for the process (49) is also presented in Fig. 6. As
in the case of N2-N2 collision there is some overestima-
tion by our calculations of the trajectory results. The
large di�erence of our and trajectory calculations can be
explained not only by the di�erent approximate meth-
ods. The theoretical calculations for VV-exchange in
molecular nitrogen using the integral quasiclassical
representation method (Zhuk and Klopovsky, 1988)
have shown the sensitivity of the results to chosen
potential surface. As can be seen from their calculation,
the rate constants obtained with di�erent potential
surfaces di�er by factors of 5±7 but the temperature
dependence is similar.

Conclusions

The FOPA was one of the ®rst methods to have been
applied in the calculation of vibrational energy transfer
in the collisions involving vibrationally excited mole-
cules. The simplicity of analytical expressions for the
rate coe�cients of vibrational-translational and vibra-
tional-vibrational processes has allowed us to use
e�ectively the results of the FOPA calculation in an
interpretation of experimental data of the vibrational
energy relaxation. But sometimes the disagreement of
theoretical estimations based on the approximation with
the results of experimental measurement has led to the
suggestion that the application of the simple method is
not correct in the calculation of the rates of vibrational
energy transfer processes.

Nikitin (1974a, b), Nikitin and Osipov (1977), Nikitin
et al. (1989) have pointed out some factors of atom-
molecular collision which are to be taken into account in
the calculations according to the FOPA. We have used
the FOPA to obtain the analytical expressions of the
rate coe�cients of TV, VT, VV and VV0-energy transfer
in molecular collisions of the main atmospheric compo-

nents. The factors of molecular attraction, oscillator
frequency change, anharmonicity, 3-dimensionality and
quasiclassical motion have been considered in the
approximation. We have normalized the presented
analytical expressions on the experimental data of VT-
relaxation times in N2 and O2 to obtain the steric factors
and the extents of repulsive exchange potentials in the
collisions N2-N2 and O2-O2. The obtained values of
exchange potential radii are in good agreement with
recent quantum-mechanical calculations.

The approach was applied to calculate the rate
coe�cients of vibrational-vibrational energy transfer in
the collisions N2-N2, O2-O2 and N2-O2. It is shown that
there is good agreement of our calculations with
experimental data for all considered cases of the energy
transfer. The disagreement with the results of semiclas-
sical trajectory calculation can be explained both by the
di�erence of applied approximate methods and by the
sensitivity of semiclassical trajectory calculation to the
chosen potential surface.
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