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Abstract. The research task described herein aims at the
structuring of an analytical tool that traces the time
course of geophysical phenomena, regional or global,
and compares it to the course of long-term solar
conditions, long-term meaning decades or a few centu-
ries. The model is based on the premise that since in a
last analysis the preponderance of atmospheric, hydro-
spheric, and, possibly, some aspects of geospheric
phenomena are, or have been, powered by energy
issuing from the sun — either now or in the past, the
long-term behavior of such phenomena is ultimately
“connected” to long-term changes occurring in the sun
itself. Accordingly, the proposed research firstly derives
and models a stable surrogate pattern for the long-term
solar activity, secondly introduces a ftransfer-function
algorithm for modeling the connection between the
surrogate and terrestrial phenomena viewed as partners
in the connection, and thirdly probes the connection
outcome for episodic or unanticipated effects that may
arise due to the fact that in the present context, the
connection, should it exist, is very likely nonlinear.
Part 1 of the study presents the theory of the concept,
while Part IT demonstrates the concept’s pertinence to a
number of terrestrial phenomena.
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1 Introduction

The particular aim of this essay is to examine the
macrodynamic aspects of solar activity without invoking
the particular agents that produce it (such as plasma

* This essay has been the basis of two earlier papers, one presented
at “The 8th International Conference of the European Union of
Geosciences” in Strasbourg, France, 9-13 April 1995; and the
other at “The 5th International Conference on Precipitation” in
Elounda, Crete, Greece, 14-16 June 1995.

physics, helioseismology, planet-induced tidal effects,
etc), and to do this in view of the presently incomplete
knowledge of the actual mechanisms involved. Conse-
quently, the outcome of this research will be descriptive
of behavior morphology, and not necessarily explana-
tory of causation as far as the phenomena in question
are concerned. In this context, let it be remembered that
Isaac Newton is often cited in support of the school
which prefers to establish measurements rather than to
ascertain causes, “hypotheses non fingo”, as he said.

However, he was far from suggesting this as a
limitation of scientific research in general, as the
following passage from his Opticks attests:

To derive two or three Principles of Motion ...would
be a very great step in Philosophy, though the Causes of
those Principles were not yet discover’d: And therefore I
scruple not to propose the Principles of Motion above-
mention’d, they being of very general Extent, and leave
their causes to be found out. (Samuel, 1952).

Our probing is based on the premise that since in a
last analysis the preponderance of atmospheric, hydro-
spheric, and possibly some aspects of geospheric phe-
nomena are or have been powered by energy issuing
from the sun, their long-term behavior reflects long-term
changes occurring in the sun itself. Hence, the proposed
research

1. proposes and models a stable surrogate pattern for the
long-term solar activity;

2. introduces a transfer-function algorithm for modeling
the connection between this surrogate and terrestrial
phenomena for which solar activity has relevance;

3. probes the connection outcome for episodic or
unanticipated events, given that the connection,
should it exist, is very likely nonlinear.

2 Methodology

It must be stated from the beginning that the basic
nature of the analysis attempted here is purposely cross-
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disciplinary, partaking of both physical science and
engineering. This stems from the conviction that theo-
retical tools which sent man to the moon and are now
preparing equipment for the unmanned exploration of
Mars, can also assist geoscience in deciphering messages
from the sun, should they exist. However, regarding solar-
terrestrial connections, such geophysically basic occur-
rences as the El Nifio in the Pacific, the temperature of
either hemisphere, volcanos throughout the globe, and
tree-rings in different locales, are occurrences which
hardly interest most engineering analysts. By the same
token, such potent tools of the latter as transfer-functions
and system-response algorithms that deal with dynamic
phenomena in general, do not people the tool kit of
geophysisists at large. Against this background, our study
takes the position that in order to proceed intelligently
with regard to solar-terrestrial connections, the two types
of skill need to complement each other on the task —
difficulties notwithstanding (Keyfitz, 1992, 1994) — and
that the Kolmogorov algorithm is the medium that can
bind the two together in the present context: its principal
worth being that it implicitly captures the dynamics
propelling a given phenomenon from the phenomenon’s
past course, even where no adequate theoretical know-
ledge of such dynamics presently exists. The algorithm’s
detailed derivation in Part I is for the benefit of the
geoscience element of the interdisciplinary team.

The analysis begins with the observation that solar
activity is not only in tune with the familiar 11-year cycle
of the sunspot number, but, in addition, varies along a
time-scale measured in centuries, as the Sporer and
Maunder Minima demonstrate (Eddy, 1976; Hughes,
1977). One approach to examining the activity’s long-
term behavior will be to consider the sunspot number as
its surrogate and, through it, structure a mathematical
model of solar activity potentially useful to the study of
whatever phenomena such activity may have a bearing
upon.

The suggested method proceeds with the task of
modeling the sunspot number in the long run based on
the following tenet and its corollary:

The Constrain Tenet. Any solar process involving the
exchange or release of energy y(¢), has an upper bound
Y, and a time rate of change dy/ds that increases with
both the current value of y(z) and the remaining
potential Y — y(¢) for further change. This renders both
y and dy/dt bounded. The modality is not new, having
been introduced by P. F. Verhulst in 1844 in connection
with population growth (Lotka, 1956).

The Corollary. Since the constrain tenet means that the
process y(¢) is nonlinear, the process cannot only give
rise to a basic oscillation fy, but also cause:

1. the appearance of new incommensurable frequences
Si, 2

2. the entrainment of these frequencies so that (for
example) f1, f> approach values fp,

3. the sudden appearance of aperiodic spectra,

4. the appearance of subharmonics f1/2, f>/4 succes-
sively (McDonald, 1976).

Put in terms of a differential equation, the tenet
requires that the process evolves as:

Loar-y, (1)

where ¢ =c¢(¢) is a factor, facilitative or inhibitory,
established by the determinants of the process in
question, which therefore may be called the mediating
factor. The expression in Eq. (1) is a Bernoulli-type
differential equation when c¢ is time dependent, and
becomes the well-known logistic law when ¢ is constant.
The equation’s general solution is:

1
l/ymax) eXp(_ymax fc(t) dt) + l/ymax

Y

y(t) B (l/ymin -

and

—In 1/ymin - 1/ymax
/c(t) dr=1 /90 =1 s

(2)

Depending on ¢(¢), this basic expression can model a
great variety of physical (as well as societal) phenomena
and, being nonlinear, can lead to outcomes of unex-
pected complexity, including cases of the so-called
deterministic chaos (May, 1976; Modis and Bebecker,
1992; Mullin and Price, 1989). The basic features of
Eq. (1) are that:

l.dy/dt=0wheny=0o0ry=7Y |,

3
2. dy/dt = max when 2y =Y —1/c*dc/dr . ()

To compute the two extremes ymin and ymax for
Eq. (2) from the data of a particular case, we may
use the expedient of approximating either end yeng
by an exponential curve; it is easy to show that

three equidistant points of such a curve will
produce:
2
1) — t— ¢
Ymin OF Vmax = yend( ) yend( a)yend( + a) . (4)

2yend(t) - yend(t - a) - yend(t + a)

The two features in Eq. (3) imply a cusp-like shape
for dy/d¢, simple when ¢(¢) = ¢ (constant), and more
complicated when c¢(¢) varies in time. When, as in the
present context, the mediating factor is a priori un-
known, the morphology of dy/ds may be approximated
by the expression:

d = exp(at® + bt +k),
d¢

as an intermediate step. This simple function is chosen
because it allows for a single peak only and, therefore,
for the capture of the very core of the growth process.
The condition upon the parameter a ensures that in the
limit dy/dt settles at a finite nonnegative level, as it
should for the constrain tenet to be satisfied. Given that
the root of the derivative of dy/d¢ in Eq. (5) defines the
time 7, of the dy/dt peak as ¢, = —b/2a, it follows that
when £, is known, Eq. (5) becomes:

a<0, a,b,k=const. (5)
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% = explat(t — 2t,) + k| . (6)
Since the parameters a, k£ in Eq. (6) can be found from
the data, y(¢) and Y are computable using Eq. (1) and,

through them, the mediating factor ¢(¢).

3 Model synthesis

The long-term behavior of solar activity can be brought
into focus by filtering out the ubiquitous annual mean
relative Wolf sunspot number and its 11-year periodic-
ity.

The simplest means of effecting this is through the 11-
year moving average (Eddy, 1976), for which the symbol
z11(¢) will be used:

1O
(1) = 1 ;‘BZQ) . (7)
the time history of which may be seen in Fig. 1.

The z(¢) data on which the present analysis is based
comes from McKinnon (1987) for the years 17001985,
and from the monthly issues of Sky and telescope after
1985. It should be remarked that the reliability of the
data deteriorates as one goes back in time (Eddy and
Stuiver, 1977), but they are deemed accurate enough at
least from 1800 to the present: the assessment is in
agreement with the results of a study by Hoyt er al.
(1994) who used 340 000 daily sunspot group counts
from more than 350 observers active between 1610 and
1993.

Three prominent features characterize z|;(¢) over the
course of the almost three hundred years for which data
exist:

1. a continuously rising secular trend 7'(¢),
2. long-term surging S(¢),
3. a quasi-patterned transient 7r(¢).

Among them, 7(¢) and S(¢) constitute the steady-state
part of z;;(¢). Of these two, the S(¢) part gives a strong
indication of the ‘Gleissherg Cycle’ (Eddy, 1976),
represented by approximately two-and-a-half surges in
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Fig. 1. Sunspot short-term and long-term

the spans 1705-1811, 1812-1905, and 1906-?. Quite
obviously, the course of each surge is of the type implied
by Eq. (1). All three surges ride over what may be called
a base-line which parallels the secular trend, and all three
feature a definite bifurcation in the neighborhood of the
surge peak. In addition, a higher-frequency transient
Tr(¢) is obvious in all three surge cases, causing a pair of
subpeaks for each surge.

3.1 Secular trend T(t)

While the upward trend of z;;(¢) over the last three
centuries is quite obvious in Fig. 1, its increase with time
cannot be open ended if the constrain tenet is to be
satisfied. However, since no peaking of 7'(z) has been
discerned over the length of the record, the analysis has
to assume such a peaking at some future time ¢, and,
based on it, determine the course of 7(¢) using Eq. (6) in
the form:
dr (¢

ln% =at(t —2t,) . (8)
The ¢, value can be found by applying linear regression
iteratively to the 1700-1991 record and selecting the ¢,
that minimizes the goodness-of-fit coefficient R>. The
result, including year of the peak ¢,, peak value 7, and
duration #,, is given by:

a=—0.410 x 1076(0.031 x 107°),

k=341,
t, = 2100 AD,

T, = 60.8,

t; = 800 years . 9)

If, in violation of the constrain-tenet, the foregoing
parameters were computed without imposing a peaking
requirement, the result would be:

a=0.800 x 107°(0.064 x 107°),

b= —0.383 x 107%(0.044 x 107°),

k=3.574,

t, = —b/2a = 2.4 years . (10)

This implies unbounded growth for 7'(¢), due to the fact
that the end of the data record used is the ascending part
of the third surge presently at its peak. It is of interest,
however, that the curve of Eq. (10) bottoms out in the
year 2.4, or 1707 AD, which is the ending era of the
Maunder Minimum.

For the base line B(f), on the basis of which the
surges are to be computed, the following simple defini-
tion was chosen:

B(t)=T() —B
B=241. (11)
This is simply the bounded curve of Eq. (9) lowered by &

units of z;;(¢) to between the 1815 and 1906 minima of
Z]](l).
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Table 1. Solar activity periods

name of maximum timing time between
maxima (years)

Homeric 1375-700 BC 675

Greek 700-375 BC 325

Roman 375 BC-690 AD 1065

Medieval 690-1490 AD 800
Columbian 1490-1675 AD 185

Modern 1675-2475 AD 800 (?)

The duration of T7(¢), and therefore B(z), was
established by first finding the base line’s value
B(1715) = 6.64 at the end of the Maunder Minimum,
and computing the future year during which the
descending branch of B(#) reaches the same level. To
place the result in historical perspective, we observe that
the contemporary trend 7(¢) corresponds to the latest of
Eddy’s historical ‘maxima’ of the sunspot activity’s
envelope using '*C as a guide (Stuiver and Quay, 1980).
Of these, the last six have occurred in historical times as
seen in Table 1, “Columbian” being our designation for
the spurt of envelope activity that took place between
the Sporer and Maunder Minima. Duration compari-
son between the two tabulations shows the ongoing
Modern Maximum to be on par with the Medieval
Maximum.

3.2 The surges S(t)

The morphology of the surging part of z;;(¢) may be
looked into either collectively or individually.

3.2.1 Collective surging. From a collective viewpoint,
particularly dominant over the post-Maunder era
appear to be two oscillations with periods of about
179 and 110 years (Williams, 1981). The first oscilla-
tion in particular has attracted researchers’ attention
due to the fact that it approaches the behavior of
orbital phenomena in the solar system: Jose (1965) has
shown this periodicity to be prominent in the motion
of the sun about the center of mass of the solar
system, and Gribbin and Plagemann (1974) point out
that 179 years is the period of total planetary
alignment during which every planet is in conjunction
with every other planet on the same side of the sun.
Wood (1972), in analyzing the connection between
sunspot number and the height of the planetary
gravity tide on the sun’s surface, observes that “‘the
curve appears to repeat after about 170 or 180 years™.
Cohen and Lintz (1974), on the other hand, suggest
that ““although the 179-year periodicity does exist in
the sunspot cycle, it is not caused by a long-term
planetary excitation but is, instead, a beat phenome-
non”. By subjecting the 1844-1971 z(¢r) data to a
maximum-entropy spectral analysis, they found three
dominant frequencies in the spectrum: 110, 10.9, and
9.7 years. Of these the latter two “interfere to produce

beats of roughly 187 years”. In our own work we
found that the 178.7- and 110-year components do
make for a good representation of the long-term
surging in z;(¢). To arrive at this, the S(¢) were
separated from z,(¢) — B(¢) and Eq. (8) was applied
for each surge separately, leading to the cusps seen in
Fig. 1, and the following parameters:

surge S Sn St

a —0.0007 —0.0014 —0.0006
(0.00005)  (0.00010)  (0.00004)

b 0.0631 0.1349 0.0786

k 2.497 0.488 1.238

R? 0.565 0.655 0.820

area Sy 3435 1890 3370

peak 62.1 62.9 78.1

peak year 1758 1865 1973

duration  1705-1821 1821-1906 1906-2045.

(12)
In a follow-up step, the surge function S;,j = I,II, III,
were expressed in terms of the aforesaid sinusoids:

Si(t) = Z XN: [aﬂ sin Bv—” (t — 1705)}

2 13
+b, cos {ﬁ”(t - 1705)” k1
n=1,2, N=178.7,110, 1705<r<1991 ,
with the following results:
a; = 4.423(0.313),
by = —4.559 (0.322),
ay = 6.334(0.323),
by = —17.320(0.315),
ko = 25.35,
R>=10.93 . (14)

Projecting into the future, this model suggests that the
core (not counting the transient) of the next surge Sty
will peak in the year 2090 at the level of 43.9 units above
the base line, as Fig. 2 portrays it. This renders the
ongoing surge Sy the strongest in the span 1700-2100 of
four centuries, with a core peak of 48.3 units above the
base line. With the base line included, Sy and Syv
emerge about equal (79.8 units).

3.2.2 Individual surges. While the use of the Eq. (6)
expedient serves a purpose in that it gives an overview of
the long-term activity, it is not conducive to probing the
morphology of the surges’ internal structure. For this,
not only the core part S(¢), but the entire surge
S(#) + Tr(¢) needs to be dealt with, i.e.:

S(t)+ Tr(t) =z11(t) — B(t) . (15)
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Fig. 2. Collective surging

After finding the total area S, under the curve of the
right-hand member, use of it and of s(¢) in Eq. (1)
produces the mediating factor c(z), that is the key
structural element of the model, and the nature of which
can be seen in Fig. 3. This is manifestly a trigger type of
occurrence whose time behavior is made up of the
combination of a growth term and a decay term
operating concurrently,

ift=0

_ )¢
)= { D e 130 (16)

with the parameter values of each case seen in the
following equation and the process pictured in Fig. 4.

surge S Si St

c1 0.362 x 1074 1.553 x 107%,  0.351 x 10~*

¢ 0032x10°5 0743 x 1075, 0.104 x 10~

o 0.055(0.004)  0.022(0.002)  0.029(0.002)

B —0.029(—0.002) —0.041(0.003) —0.215(0.016).
(17)

Of interest is the fact that the observed dip at each S(¢)
peak occurs near the crossing of the two ¢o(¢) branches
in Eq. (16). The term ¢; depicts a positive feedback
process, which at some level triggers the negative
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Fig. 3. Mediating factor (actual and model)
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feedback process represented by the negative feedback
term ¢, of the next surge’s mediating factor. Interest-
ingly enough, this modality replicates a relationship
between solar activity and the earth’s magnetic field: the
diurnal variation of the horizontal component of this
field on abnormally quiet days (AQD) at the time of
sunspot minimum consistently anticipates the magni-
tude of the subsequent sunspot minimum (Brown,
1974). This pattern implies ‘“‘that the size of solar
activity maximum is determined at the very beginning
of a cycle, or perhaps the very end of the preceding
cycle from the ‘depth’ of the solar minimum” (Brown,
1974).

With ¢y(¢) known, integration of the expression in
Eq. (1) produces the equation s(#) of each individual
surge as:

; :ASAco(t) exp(—J
[Aexp(—J) + 1]’

1 1
A=———
S0 SA ’

J=SL e 1) =2t 1|+,
o B
where s is the value of S(¢) at the time #, of the surge
onset, and iy the integration constant. The values of
these two parameters, along with that of the model S,
are given as

surge S Si Sm

Sy 3560 1990 3630 (19)
So 9.82 387 227

io 0.002 0.003 0.002.

Table 2 lists the projected values of the steady-state part
of zy1(¢) in column A, from the present to the end of
surge Spp. In column B of the table an alternate
projection is listed, based on the observation that the
surge Sy appears to be symmetric about the 1977
position and, therefore:

S (1977 4 t) = Sm (1977 — t) + k,
k=095 (=14 . (20)
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Table 2. z;(¢) projection
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year z11(¢) year z11(¢)
A B A B

1990 94.5 2007 57.9 58.6
1991 93.5 94.6 2008 56.4 56.3
1992 91.8 89.9 2009 54.9 54.1
1993 89.5 92.6 2010 53.5 51.9
1994 86.8 94.6 2011 52.1 49.9
1995 83.9 92.6 2012 50.8 46.4
1996 80.9 89.6 2013 49.9 449
1997 78.0 80.7 2014 48.3 43.7
1998 75.2 70.8 2015 47.2 42.8
1999 72.6 68.2 2016 46.2 42.1
2000 70.2 69.3 2017 453 41.6
2001 68.0 72.9 2018 44.5 41.3
2002 66.0 70.5 2019 43.8 41.2
2003 64.2 68.1 2020 43.2 41.1
2004 62.5 65.7 2025 40.7 40.9
2005 60.9 63.3 2030 38.4 37.5
2006 59.4 61.0 2035 36.6 32.8

The restriction upon ¢ places the projection at the year
1992 or later, while the constant & makes the average
value of the difference between columns A and B equal to
zero. It is curve B that will be used in Part II of this study.

The following surge characteristics are presented at
this point in order to effect comparisons:

peak 1 trough  peak2  surge

position position position duration
St 0.301 0.528 0.783 1 (= 106 years)
S 0.293 0.521 0.783 1 (= 92 years)
S 0.400 0.540 0.637 1 (= 125 years).

(1)

3.3 The transient Tr(t)

The relatively shorter period undulations 7r(¢) exhibited
by zi(¢), in addition to the long-span surges, are
accounted for by the basic tenet’s corollary and
therefore have to be represented by a term c¢,(¢) in the
mediating factor ¢(¢). Accordingly, and for each surge
separately, the residual:

er(1) = e(t) = co(t)

was regressed on the sum of the first three subharmonics
of the 11-year cycle and of the Gleissberg cycle (8th
subharmonic) mentioned earlier:

2n 2n
er(t) = {aN sin <_ z) + by cos (_ t)} “k,
EN: 11.IN 11.1N

N=23438. (23)

(22)

The reason for choosing this set of N-values is that the
first three subharmonics have been found, via Fourier
analysis, in at least two widely separated terrestrial
occurrences in which the solar factor is found implicated

(Clark, 1988; Williams, et al. 1985). The eighth subhar-
monic was added heuristically, because its inclusion was
found to triple the value of the regression’s goodness-of-
fit coefficient R?>. This subharmonic is, of course, the
Gleissberg cycle already mentioned.

The ay, by values found through regression are
shown to be:

coef. x 10° S Si St
a 0.397(0.043)  —7.348(0.033)  —1.766 (0.049)
by 0.441(0.074)  14.815(0.088)  0.385(0.029)
a 0.897(0.061)  —24.096 (0.077) —1.294 (0.059)
by 0.506 (0.055)  —0.197(0.068) —1.817 (0.070)
aq 1.732(0.071)  —8.602(0.081)  2.808 (0.091)
by ~2.384(0.067) 5.618(0.077)  2.843(0.087)
a5 7.850(0.059)  4.271(0.090)  —0.373(0.092)
by 0.601(0.078)  11.552(0.045)  —0.084 (0.009)
k 0.136 3.093 0.855
R? 0.902 0.789 0.758.

(24)

Figure 5 shows the complete model z;;(¢). It is worth
noticing the similarity between zj;(¢) and J.A. Eddy’s
annual mean sunspot numbers at maxima in the 11-
year cycle (Eddy, 1976, Fig. 8). The degree of agree-
ment between actual and modeled surge may be judged
based upon the mean and standard deviation of the
two:

Sy S St
actual model actual model actual model
avg 3233 3251 21.26 21.29 3221 3298
std 16.60 16.66 1501 1440 18.94 20.90.
(25)

Before leaving the topic of the long-term zj;(¢) surging
of solar activity, we may point out the fact that the
trigger-like nature of the ‘“‘mediating factor” is akin to
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the “eruption mechanism" that has been postulated for
the 11-year sunspot cycle z(7) itself (Kiepenheuer, 1959).
As Dicke puts it, “It has become clear by now that the
rise and fall in the number of spots is due to a number of
practically independent individual processes: thus the
idea of a true periodic phenomenon was dropped in
favor of the so-called “‘eruption hypothesis” (Dicke,
1978).

3.4 The derivative Dz;(t)

As in most dynamic processes, the time-derivative
Dz (t) of zj;(f) can be instrumental in cases where
z11(¢) is a casual factor for the process at hand. It can be
computed either from Eq. (1) or from the first difference
of z;(¢) as a surrogate which, according to Eq. (7),
results in:

z(t) = 11Dz (¢) + z(t — 11) , (26)

and offers the means of projecting the sunspot number
11 years ahead.

Since Eq. (18) makes possible the extension of the
model z;,(¢) beyond the present, a projection is possible
with an accuracy commensurate with the fidelity of the
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Fig. 6. Long-term sunspot derivative

model zy(¢); Fig. 6 shows the latter, revealing a regu-
larity, which we discuss further later in this study.

4 Model implementation

The analytical means through which the present model
is to be applied in seeking possible links between long-
term solar activity on the one hand, and terrestrial
phenomena on the other, range from the simple to the
fairly sophisticated. In the sense that this means
“connecting” one function of time f(¢) with another
g(t), the simplest relationship will be the direct one:

g(t) =af(t) +b
a,b = const. ; (27)
or, when the data ranges warrant it,

) 007 _ 10 —F

Og of

+b, (28)

where g and f are the averages, ¢, and o, the standard
deviations of the two functions, and gy(z),fv(¢) the
normalized ¢(t) and f(¢). This simple transformation
brings the two data ranges within common bounds, and
when necessary, can be rendered more effective if before
normalization, g(z) were “stretched” to:

goo(t) = g(1)" . (29)
Normalization allows for a meaningful quantitative
comparison of the contribution of multiple inputs
fi(@) ... fu(2) affecting a common output ¢g(¢). Normal-
ization, therefore, will be applied routinely in the entries
of Part II of the study.

Where a more complex dynamic input-output con-
nection is involved or suspected than that of Eq. (27),
the powerful Kolmogorov method of signal-processing
and system-response may be applied to advantage
(Kolmogorov, 1941). Signal-processing pertains to ei-
ther the interpolation or extrapolation of f(¢), while
system-response addresses underlying causality or co-
evolution; generally, both cases have to cope with
contamination from extraneous noise. The method has
proved most effective in signal detection and estimation,
as well as in control system analysis and design. A
simplified derivation of the method by this author is
given in the following.

Kolmogorov’s formulation of the signal extrapola-
tion case assumes that a function f(¢) of ¢, where both ¢
and f(¢) are real variables, is given in terms of equally
spaced samples

f(fn)’ f(7n+1)7f(71)7 f(O) ) (30)

f(0) being the current value, and that its value f(k), &
units of time into the future, is to be predicted. It is
assumed that f(¢) is weakly stationary and, therefore,

1. that it has a finite second moment

E[f(1)*] < o0 , (31)
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where E stands for expected value;
2. that the joint probability of any two of its values is a
function of their time separation only:

E[f(0f(t +7)] = On(7) ; (32)
3. that it has a continuous covariance function QOg(t).

Assuming that all information available on f(¢) is
contained in the already-known samples means that the
simplest way of finding its value f(k) k time-units into
the future will be to express the latter as a linear
combination of the former:

0

fk) =" af(i) . (33)

—n
Given that, by definition, the variance ¢> of the error

between the true value of f(k) and its serial represen-

tation is:
0 2
atffw—Eyﬂﬂ, (34)

—n

minimization of ¢° requires that its first n + 1 derivatives
with respect to a; be equated to zero. This results in
n + 1 equations in the unknowns q;,

E[f (k)7 (0)] = aoE[f (0)f(0)] + - - + anE[f (=n)f(0)]

E[f () (=D] = aE[f (0)f(=D)] + - - + a,E[f (=n)f (=1)],

E[f(k)f (=n)] = aoE[f (0)f (=n)] + - - - + an[f (=n)f (=n)] .

(35)

However, because of the weak stationarity condition,
Eq. (34),

E[f(k)f (k=] =E[f(t)f(t —1)] = On(=7) . (36)
Furthermore, since f(¢) is a real quantity, its autoco-
variance function Qg has to be an even function:

Orr(—1) = On(+7) . (37)
Thus, the system of Egs. (35) becomes:
Or(0)  Ow(1) On(2) Ow(n) ap
On(1) O (0) Or(1) O(n—1) ||
Oi(n) Om(n—1) 0x(0) ay
Orr(k)
Orr(k +1)
= . (38)
Orr(k +n)

from which the unknowns a; can be computed.

While the analysis that led to Eq. (38) is based on the
unit-time step, the unit’s length has not been specified: it
can be one year, one decade, or any other convenient
magnitude. The potential of this tool in projecting
Dz (¢) into the future is obvious.

Besides the case of signal extrapolation just seen, the
Kolmogorov method can be used in the problem of
system-response as well. In this case an output or
response function is supposed to be the result of an input
or forcing function being modified by a linear operator.
In the present context, g(¢), for instance, may be the
result of the atmosphere’s or hydrosphere’s intervening
between energy inputs from the sun and an ensuing
climatic or other effect. Here again the representation:

0
9(0) = > aif () (39)
is used.

Comparison with Eq. (33) shows that the solution
given by Eq. (30) will be the result, except for the fact
that the output vector in the right-hand side of Eq. (38)
is now replaced by the vector:

[01e(0), Qs (—1), - - Ore(—m)] ", (40)

Or,(.) being the cross-correlation function between f'(¢)
and ¢(7).

In the case of continuous time-functions the response
relationship between output g(¢) and input f(¢) is given
by the expression:

0
w»:/fmmom, (41)

where w(¢) is the transfer function of the process (James
et al., 1947).

For the case of a discrete functional representation
where both f(¢) and g(¢) are given in terms of equally
spaced samples, Eq. (41) has the counterpart:

0
g(0) =" f(iyw(i) - (42)
Comparison of Eq. (41) with Eq. (34) shows that:
a; = w(i)

i=0,1,2,... , (43)

meaning that the vector [ag,a_1, ... a,,,]T is the system
response (or transfer) function, between f(¢) and ¢(¢) in
the serial case. In the present context, of course,
S(t) =zu (1)

Table 3 lists the values of Og(.) for z(¢), z11(¢), and
Dz, (t), and Fig. 7 portrays the outcome. In the first
curve the 11-year cycle of the sunspot number domi-
nates; in the second curve one half of the Gleissberg
cycle is obvious, and in the third a new and unexpected
oscillation whose period is

t, = 8.25 years (44)

manifests itself. This is a vivid example of nonlinear
systems’ “‘propensity to lapse into oscillations of new
and incommensurable frequencies” (McDonald, 1980),
and has been previously detected in sunspot periodo-
grams based on maximum entropy spectral analysis
(Cohen et al., 1974).
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Table 3. Autocorrelation functions (note: the correlations QO are for the functions f(¢) — f.,, Where [Z]
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=59.25, [le]uv = 48.61,

av

[Dz11],, = 2.97; the time-spans are 1890-1990 for z(), 1755-1990 for z;1(¢), and 1740-1990 for Dz;;(t))
year Ox(.) year Ox(.)
Z(t) Z]](l) DZ]](Z) Z(l) le(t) DZ]](I)

0 1.000 1.000 1.000 26 —-0.346 —-0.032 —-0.071
1 0.806 0.974 0.741 27 -0.375 —-0.065 -0.126
2 0.404 0.930 0.358 28 -0.256 —-0.095 -0.149
3 -0.035 0.879 0.026 29 -0.032 —-0.121 —-0.148
4 —-0.355 0.831 -0.135 30 0.231 —-0.145 —-0.108
5 —-0.495 0.787 —-0.146 31 0.423 -0.167 —-0.067
6 -0.428 0.747 -0.035 32 0.489 -0.183 -0.016
7 -0.176 0.707 0.129 33 0.381 -0.209 —-0.011
8 0.181 0.663 0.262 34 0.158 -0.228 -0.036
9 0.528 0.612 0.264 35 -0.078 -0.241 -0.078

10 0.735 0.555 0.080 36 —-0.241 —-0.247

11 0.706 0.498 -0.191 37 -0.297 —-0.246

12 0.471 0.448 -0.270 38 -0.254 —-0.243

13 0.145 0.407 -0.238 39 -0.116 -0.236

14 -0.147 0.373 -0.117 40 0.053 -0.230

15 -0.343 0.342 0.016 41 0.202 -0.224

16 —-0.400 0.309 0.109 42 0.262 -0.221

17 -0.318 0.274 0.097 43 0.230 -0.220

18 -0.105 0.236 0.014 44 0.127 -0.218

19 0.187 0.197 —-0.084 45 0.009 -0.213

20 0.450 0.162 —-0.186 46 -0.102 -0.202

21 0.602 0.130 -0.209 47 -0.178 -0.187

22 0.581 0.101 -0.144 48 -0.224 -0.171

23 0.392 0.071 -0.053 49 -0.211 -0.157

24 0.096 0.039 0.001 50 —-0.141 -0.147

25 -0.172 0.004 —-0.001

One feature of the Kolmogorov algorithm as pre-
sented here is that its definition in Egs. (33) and (39)
does not provide for a constant term, having been
developed originally in a communication-signal context.
Care, therefore, needs to be exercized when applied to
signals from other realms.

Equally challenging in the context of the present
theme is the pertinence of the cross-correlation function
Ofy(.): it has to do with the case where the cause side of
the presumed cause/effect relationship g(¢) = function of
f(¢) per diagram A:

Jit) ——> —> 8(1) (A)
is actually more complex as in diagram B,
f(t) —— ——»g(t) ()
FOp—

but the factor f>(¢#) has been omitted for lack of
knowledge regarding the innards of the phenomenon
at hand. In this circumstance application of the Ko-
Imogorov algorithm on the system A instead of B will
leave a residual in which the presence of f>(¢) remains to
be detected and extracted. This of course can be a
difficult task, especially when incommensurable frequen-
cies enter the picture. A case in point is terrestrial
climate where not only the energy inputed by the sun is a
factor, but contaminants, either manmade (Plantico
et al., 1990) or subterranean (Schneider and Mass, 1975;

Lamb, 1970), which are released into the atmosphere
play a significant role. Only in the case of known factors
f (), f2(¢) acting additively can the algorithm in Eq. (45)
be changed explicitly to represent the case.

For the record, Table 4 gives the actual and model
values of the long-term solar activity’s surrogate z; (7).

5 Sunspot number projection

We conclude Part I of this essay by demonstrating the
model’s ability to effect an 11-year projection of the
annual sunspot number itself over the past 150 years;
this via Eq. (33).

iy A Cortel (;) (tl) I
0.8 ‘% \{B B Correl. z44(t)- zy4(t) 1
{ A C Correl. Dzy4(t)- Dz44(t)
= 0.6
<] | N M
2 o, 1 JIN \ Fa\
0 v
o) 1 AN
St I W/ A N T
S ol VNI ™ JI K
- LA Y, N VA NN /
ool WL N AL FN/ 1 /
' Uyl MY ] Re f RV
P 1 v
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Fig. 7. Component autocovariances
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Table 4. Long-term solar activity zy; (¢)
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year Z11 year Z11 year Z11 year Z11 year Z11
1790 72.94 1830 31.01 1870 57.07 1910 33.99 1950 73.1
1791 71.28 1831 33.94 1871 58.47 1911 33.65 1951 73.25
1792 70.55 1832 35.84 1872 61.15 1912 33.73 1952 71.79
1793 71.31 1833 36.25 1873 61.79 1913 33.4 1953 70.27
1794 72.96 1834 37.28 1874 61.85 1914 32.05 1954 69.19
1795 73.97 1835 41.68 1875 59.13 1915 32.55 1955 71.77
1796 73.24 1836 51.22 1876 57.38 1916 31.96 1956 81.64
1797 66.28 1837 60.49 1877 57.03 1917 36.52 1957 90.51
1798 54.65 1838 65.27 1878 56.67 1918 38.21 1958 93.53
1799 43.37 1839 67.23 1879 53.8 1919 39.58 1959 95.59
1800 33.95 1840 67.01 1880 50.01 1920 39.92 1960 93.55
1801 28.87 1841 63.9 1881 42.31 1921 40.6 1961 90.83
1802 26.91 1842 61.75 1882 37.62 1922 41.37 1962 87.93
1803 25.37 1843 60.23 1883 33.72 1923 41.57 1963 87.6
1804 25.43 1844 60.82 1884 33.47 1924 42.96 1964 87.26
1805 25.54 1845 63.26 1885 34.15 1925 46.12 1965 88.24
1806 26.15 1846 63.68 1886 34.92 1926 47.62 1966 89.05
1807 25.62 1847 61.59 1887 35.08 1927 48.7 1967 84.7
1808 25.81 1848 60.35 1888 34.57 1928 46.33 1968 77.04
1809 25.66 1849 59.82 1889 34.93 1929 44.9 1969 69.83
1810 25.05 1850 58.08 1890 35.03 1930 42.36 1970 64.87
1811 23.86 1851 58.07 1891 35.33 1931 39.96 1971 60.72
1812 21.23 1852 59.65 1892 37.03 1932 38.6 1972 62.08
1813 18.25 1853 61 1893 39.35 1933 37.83 1973 62.13
1814 15.59 1854 61.9 1894 40.65 1934 38.09 1974 62.73
1815 14.49 1855 61.15 1895 40.69 1935 39.85 1975 63.21
1816 14.82 1856 57.89 1896 39.75 1936 43.07 1976 62.98
1817 16 1857 54.36 1897 39.82 1937 47.66 1977 61.21
1818 17.82 1858 50.39 1898 41.05 1938 51.35 1978 61.09
1819 19.22 1859 47.58 1899 41.54 1939 52.35 1979 65.6
1820 20.41 1860 47.54 1900 41.74 1940 52.62 1980 70.07
1821 21 1861 48.5 1901 41.34 1941 53.69 1981 73.35
1822 21.24 1862 48.01 1902 38.55 1942 54.55 1982 77.83
1823 20.95 1863 47.09 1903 34.14 1943 55.02 1983 77.62
1824 20.61 1864 47.82 1904 30.22 1944 55.37 1984 78.34
1825 20.85 1865 48.72 1905 28.9 1945 57.6 1985 76.83
1826 20.94 1866 49.59 1906 27.97 1946 62.74 1986 76.64
1827 21.28 1867 49.86 1907 29.81 1947 69.27 1987 78.15
1828 23.38 1868 51.22 1908 31.84 1948 71.26 1988 84.75
1829 26.74 1869 52.96 1909 334 1949 73.55 1989 90.68
1990 89.5

A reliable prediction of the 11-year cycle “could be of
great importance to many fields of human activity;
telecommunications, space exploration, and climate
forecasting being among them” (Fyodorof et al.,
1996). Over the years the list of attempts to produce a
solution has been long: see for instance, Wilson (1985),
McNish and Lincoln (1987), Withbroe (1989), and Friis-
Christensen and Lassen (1991). Although the descriptive
schemes have been many, and the numerical models
range from simple to fairly elaborate, none has achieved
the goal, including those based on a Fourier transform.
The disappointment is due, of course, to the limited
knowledge of the dynamics of the astrophysical process
taking place. It is the view of this study that the
Kolmogorov algorithm can help with the quest, and
produce a better descriptor. For this, the suggested
modus operandi proceeds in three successive steps:

1. Generate an 11-year Kolmogorov projection z,(¢) of
z(t) based on three past equidistant states of it:
z(t — 33), z(t — 22), and z(t — 11).

2. Search the residual »(z) = z(¢) — z,(¢) for the presence
of both the basic 11-year solar cycle and the long-
term zy;(¢) or its derivative .

3. Finally, apply regression analysis to the residual r(¢)
as a function of the terms found in Step 2.

The first step requires solving the system:

0(0) o(11) 0(22) ai || O(11)
o(11) 00) Q1) | =|an|l0(22)], (53)
0(22) Q(11) ©0(0) a3 || O(33)

from which, based on Table 3 for the values of O(.) of
the autocorrelation of z(z), the following transfer
function is computed:

i (i)

233 —0.00179

—22 4025351 (54)
11 4097182,

effecting the projection:
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z(t) =Y z(t—i) . (55)

i

Since z,(¢) and z(¢) have a concurrent part, the former
can be improved by making it:

z,(t) = mz(t) + n (56)

and finding the parameters a, b through linear regres-
sion:

m = 0.855(0.067),
n = 15270, (57)
R?>=10.532 .

This step serves to compensate for the absence of a
constant term in the definition of the Kolmogorov
algorithm mentioned earlier.

In the residual r(¢) of the operation described by
Eq. (56), the presence of Dz is discerned, and in the
same residual’s autocorrelation function (Fig. 8) the
presence of the sunspot number’s basic 11-year cycle is
obvious. Hence, r(¢) is set as:

r(t) = asin(2n/11 x ) + beos(2n/11 x t) + ¢Dzy (t) + d

(58)
from which a new regression produces:
a = -9.957(0.755),
b=-0.867(0.755),
¢ =9.802(0.186), (59)
d = —2.326,
R? =0.949,
to = 1830 .

Thus, the complete 11-year projection expression be-
comes:

zZ(t+11) =z, () + r(t + 11) . (60)

In this expression the Dz (¢z+ 11) term present in
r(t+ 11) comes from the actual z;;(¢) up to the year
1995 and the model z;;(¢) beyond that.
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Fig. 9. Sunspot number 11-year projection

The final outcome may be seen in Fig. 9, while
Table 5 lists the 1990— 2005 projections. The strength of
the approach can be assessed by the fact that in the
1835-1995 record of fifteen z(¢) maxima and fourteen
minima, the model missed only the 1968 maximum by
1 year and the 1913 minimum by 2 years, which is
smaller than the 2.3 years suggested by Fyodorov et al.
(1996) as the limit for useful prediction.

Equally important is the fact that over the same time-
span the Kolmogorov term of the 11-year prediction
captured 86% of the z(¢) signal; this is based on the ratio
of the standard deviation (37.6) of z(¢)-predicted versus
(41.5) of z(¢)-actual. For the complete prediction algo-
rithm the ratio is 0.94. As far as the sunspot number’s
peak values are concerned, the projection error is given
in Table 6. The approach may be compared to the

Table 5. z(¢) 11-year projection

year z(t) year z(t)
actual projected projected

1990 142.65 127.6 1999 53.4
1991 145.2 134.6 2000 111.9
1992 94.3 91.0 2001 107.9
1993 54.5 53.9 2002 116.8
1994 29.9 29.1 2003 75.1
1995 17.5 12.4 2004 40.0
1996 8.0 2005 14.1
1997 0 2006 0
1998 0

Table 6. Peak projection error

cycle no. error % cycle no. error %
9 +4.7 16 +2.1

10 +1.7 17 +2.1

11 +1.3 18 +1.5

12 —3.6 19 +8.6

13 -2.8 20 +2.1

14 -39 21 +3.7

15 +3.1 22 +7.2
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present lean state of the sunspot prediction art as
conducted at

the 1996 NASA “consensus panel” convened under
Jo Ann Joselyn of the National Oceanic and Atmo-
spheric Administration for the purpose of predicting
the maximum of the next sunspot cycle: the panel
considered 28 prediction methods of all kinds —
including numerology-based ones — and settled on a
maximum for the upcoming sunspot cycle no. 23
equal to that of the ongoing 22nd one. Considering
that sunspot peaks are accompanied by the emission
of highly energetic particles and magnetic storms that
can blast the delicate electronics of military, scientific,
and commercial satellites, and that the ultraviolet
radiation from an active sun heats up Earth’s upper
atmosphere causing it to expand and exert extra drag
on satellites, a real barn-burner of a maximum could
create the need of new shuttle missions to reboost the
orbiting Hubble Space Telescope and the planned
space station” (Glanz, 1997).

6 Conclusions

The analysis detailed in the foregoing sections brought
out and modeled three main features of long-term solar
activity based on the sunspot number as the activity’s
surrogate: a rising trend, long-term surging, and a
patterned transient. Although the idea of using the
sunspot number to gauge solar activity is not new
(Brown, 1974), the casting of this activity in the role of a
long-term dynamic surging agent is. Noteworthy is the
fact that the model points to the present decade being
the time of peaking of the latest surge Sy of long-term
solar activity to date, after which a span of roughly five
decades of gradual subsiding is to follow. It is also
significant that the macrodynamics of a phenomenon as
complex as the energy exchanges taking place in the
sun’s interior can be portrayed in terms of a represen-
tation as simple and compact as the mediating factor
having the characteristics of a trigger mechanism. This
concept, coupled with the system-response tool of the
Kolmogorov formulation, make for an effective analyt-
ical tool for the study of at least the phenomenology of
sun-related long-term terrestrial phenomena, as Part 11
of this study will demonstrate. It should be pointed out
that the model’s synthesis made use of long-term
periodicities present in particular geophysical topics
where solar energy certainly has a role. Beyond this, the
mediating factor may, as an operational concept, have a
bearing upon the search for the modus operandi of the
complex dynamics of the interior of the sun itself (Cox
et al., 1993). Finally, particular attention of the Ko-
Imogorov algorithm by the applied scientist in any field
is warranted; this because of its premise that the
dynamics of the studied phenomenon is contained in
the historical data itself, even if no theory exists about
such dynamics at the present time.
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