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Abstract. Global magnetohydrodynamic (MHD) simu-
lations of the Earth's magnetosphere must be coupled
with a dynamical ionospheric module in order to give
realistic results. The usual approach is to compute the
®eld-aligned current (FAC) from the magnetospheric
MHD variables at the ionospheric boundary. The
ionospheric potential is solved from an elliptic equation
using the FAC as a source term. The plasma velocity at
the boundary is the E� B velocity associated with the
ionospheric potential. Contemporary global MHD sim-
ulations which include a serious ionospheric model use
this method, which we call the electrostatic approach in
this paper. We study the possibility of reversing the ¯ow
of information through the ionosphere: the magneto-
sphere gives the electric ®eld to the ionosphere. The ®eld
is not necessarily electrostatic, thus we will call this
scheme electromagnetic. The electric ®eld determines the
horizontal ionospheric current. The divergence of the
horizontal current gives the FAC, which is used as a
boundary condition for MHD equations. We derive the
necessary formulas and discuss the validity of the
approximations necessarily involved. It is concluded
that the electromagnetic ionosphere-magnetosphere
coupling scheme is a serious candidate for future global
MHD simulators, although a few problem areas still
remain. At minimum, it should be investigated further
to discover whether there are any di�erences in the
simulation using the electrostatic or the electromagnetic
ionospheric coupling.
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1 Introduction

Global magnetohydrodynamic (MHD) simulations of
the Earth's magnetosphere, and possibly other celestial
objects, are becoming powerful tools for many kinds of
quantitative studies (e.g., Raeder et al., 1995, Fedder
et al., 1995, Tanaka, 1995, Janhunen et al., 1996,
Janhunen, 1996). To yield realistic results, however, it is
necessary to couple these models to a detailed iono-
spheric model, which is a nontrivial task even at the
conceptual level, as will become apparent.

An electrostatic ionosphere coupled to global MHD
simulations was recently discussed in detail by Good-
man (1995) [see also Amm (1996) and Goodman (1996)].
Besides, the electrostatic ionosphere has been imple-
mented by at least some of the groups working on global
MHD studies (Raeder et al., 1995, Fedder et al., 1995,
Janhunen, 1996). In the present paper our focus is not
the ionospheric elliptic equation but rather the magne-
tosphere-ionosphere interface boundary.

The structure of the paper is as follows. We ®rst
present the electrostatic ionospheric model. We are most
familiar with our own simulation code (GUMICS-3)
(Janhunen, 1996), and consequently our presentation of
the electrostatic model follows closely the implementa-
tion found in GUMICS-3. We then propose the new
electromagnetic model (that is, allow a nonzero curl for
the ionospheric electric ®eld), deriving the necessary
®eld-aligned current (FAC) mapping formulas. We
conclude the paper by discussing the physical meaning
of the two models and their equivalence.

2 The electrostatic ionosphere

When coupling global MHD simulations with iono-
spheric models, it is customary to introduce an arti®cial
boundary (AB) above the ionosphere. In our model the
AB is located at 3:7 RE. This is done to avoid solving the
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MHD equations in the near-Earth region, where the
very high AlfveÂ n speed would force us to use a very
small time-step to obey the Courant condition (the
Courant condition requires that the time-step must be
smaller than the fast magnetosonic wave travel time
through the grid cell, otherwise numerical instability will
result). The region between the ionosphere and the AB is
assumed force-free, which means that all current is ®eld-
aligned and the magnetic ®eld is approximated by the
dipole ®eld (in principle, quadrupole and higher terms
representing the internal ®eld could also be included). In
GUMICS-3 we use adaptive subcycling in time, so that
while the time-step is small for near-Earth grid cells, it
remains larger for other cells. This optimization mini-
mizes the computational burden resulting from the high
near-Earth AlfveÂ n speed.

The location of the AB is a trade-o� between
resolution and geometric distortions. If the AB is
located at low altitude, 2 RE, say, then the distortions
resulting from the fact that the magnetic ®eld is not
exactly force-free and the variation ®eld is not neces-
sarily very much smaller than the dipole ®eld, are
reduced. However, the simulation code is slowed down a
lot. It is also more di�cult to achieve high spatial
resolution at the AB and in the ionosphere (ionospheric
and AB resolution are related by ¯ux-tube mapping): to
maintain the same mapped-down ionospheric resolu-
tion, the spacing between grid points at the AB must be
lowered further, which increases the computational load
even further. We have preferred to set the AB at a
relatively high (3.7 RE) altitude and to accept that some
distortions might occur during strong FAC events. The
saved CPU time has been used to increased spatial
resolution in the whole magnetosphere. In this way the
simulation as a whole has a relatively high resolution,
especially in the near-Earth region, which means that
more physical phenomena can be addressed. We believe
that the distortions due to the AB, being of geometric
nature, do not a�ect the results qualitatively.

A possibility that has not yet been studied is whether
an implicit MHD code could be used. In case of implicit
codes we would not have to obey the Courant condition
and the AB could be placed at a low altitude, possibly
even at the ionosphere. However, the propagation of
AlfveÂ n waves would not be accurately resolved in the
near-Earth region in this case.

The computational magnetosphere-ionosphere cou-
pling cycle starts from the AB, where the FAC is
computed from the MHD variables: jk � B̂ � r � B=l0,
where B̂ denotes the unit vector in the direction of the
magnetic ®eld. Within the force-free region the FAC
(which is a scalar) can be mapped along the magnetic
®eld by multiplying it by the magnetic ®eld ratio,
because the total current is always divergence-free (the
Debye length is always much smaller than the scales of
interest in global MHD studies) and within the force-
free region, all current is by de®nition FAC. Being a
low-beta plasma, the near-Earth region is force-free
because any perpendicular component of the current
density j would introduce a j� B force too large to be
canceled by the pressure gradient or other terms in the

momentum equation (Janhunen and Koskinen, 1997).
Thus we can easily obtain the FAC at the ionospheric
plane j�i�k .

The next step is to solve the ionospheric potential Ui
from the elliptic equation (for example, Amm, 1996)

ÿr � �R � rUi� � j�i�k sin I ; �1�

where R is the horizontal height-integrated conductivity
tensor and I is the inclination angle of the magnetic ®eld.
In GUMICS-3 the conductivities depend on space and
time according to solar UV radiation and electron
precipitation which is approximately computed from the
self-consistent MHD variables (Janhunen, 1996). The
FAC j�i�k is measured positive downward. The LHS of
Eq. (1) is the divergence of the horizontal ionospheric
current (J � R � E � ÿR � rUi is the horizontal current).
If the neutral atmosphere is moving, the term vn � B (vn
is the neutral velocity) must be added to E; this is also
one way to take into account Earth's rotation. The term
containing vn is transferred to the RHS of the equation
because it is a source term.

The solution of Eq. (1) requires an elliptic solver. In
GUMICS-3 we use the biconjugate gradient method
(Press et al., 1992). If polar coordinates are used, the
poles may cause some problems because the coordinates
are singular there. Nevertheless, in GUMICS-3 we are
currently using polar coordinates and solving for the
northern and southern hemispheric potential separately
to reduce the size of the linear system. We put Ui to zero
at the pole (homogeneous Dirichlet condition) and use
the homogeneous Neumann boundary condition (zero
latitudinal derivative of the potential) at the equator-
ward boundary. The equatorward boundary resides at
about 50o magnetic latitude; the regions equatorward
from this circle do not map to the AB surface. In this
way the additive constants are e�ectively ®xed separate-
ly on both the hemispheres, but this causes no problems
because the constants are di�erentiated away later (as
we will show). In this case we found that using the
``conservative'' di�erencing [i.e., di�erencing Eq. (1) as
such without expanding the di�erentiations analytically
®rst, see also Oppenheim (1995)] reduces the problems
caused by the coordinate singularity at the north/south
pole such that only a slight kink in the potential
contours is sometimes seen at the pole, which is only an
aesthetic problem.

When the ionospheric potential is known, it is
mapped through the force-free region to the AB
(arti®cial boundary), taking into account the parallel
potential drop contribution also. If there is no parallel
potential drop, the potential is mapped by simply
copying it along the dipole ®eld line. We will assume
that this is the case for the moment and return to the
parallel potential drop issue later. Thus we obtain the
potential at the AB, which enables us to compute the
corresponding electric ®eld E by di�erentiation. It is
at this stage that the additive constants disappear
and no problems result from the separate treatment
of the two hemispheres. Having the electric ®eld at
the AB we compute the corresponding E� B velocity
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v � E� B=B2, which is used as a boundary condition for
the MHD equations. This ®xes the perpendicular
velocity at the AB. To ®x the magnetic ®eld-parallel
velocity, three approaches have been tested in GUM-
ICS-3: (1) let the parallel velocity be zero, (2) use a
homogeneous Neumann boundary condition for the
parallel velocity, i.e., copy the parallel velocity from the
nearest interior grid cell, (3) use such a value for the
parallel velocity that the component normal to the AB
surface is zero. Because the magnetic ®eld is not exactly
radial at AB, (3) is not the same as (1), although in polar
regions the di�erence is not large. Approach (1) works
reasonably well in most cases, but during long periods of
positive IMF Bz, unrealistically large plasma density
accumulation may occur in the dayside cusp region.
Approach (2) does not seem to give good results.
Approach (3) is currently being tested. Overall, the
question of plasma ¯ow across the AB is still an obscure
one which would deserve further study. However,
relatively short phenomena such as substorms are likely
not to be very sensitive on plasma transport across the
AB.

The ionosphere-magnetosphere interaction cycle in
the electrostatic approach is now complete. We started
from magnetospheric FAC and arrived at plasma
velocity at the AB surface. In GUMICS-3 the coupling
cycle is computed every 4 s. With this setup, the
program spends 80±90% of the time in the magneto-
sphere and 10±20% of the time in the ionosphere.
Within the ionosphere, the iterative solution of the
elliptic equation dominates the CPU time.

The remaining issue is how to include the parallel
potential drop. It can be taken into account by adding
its contribution to the ionospheric potential Ui. If only
the mirror force on electrons is taken into account, the
potential at the AB surface is the mapped-up version of
Um � Ui � DU, where DU is equal to

DU � min 0;
j�i�k
K
� kBT

e

0@ 1A �2�

(Janhunen, 1996), where positive current is downward
and DU is always nonpositive [the magnetosphere is
never in a higher potential than the ionosphere (Lemaire
and Scherer, 1983)]. Here K is the Lyons-Evans-Lundin
parameter, which in the present simulation is computed
from

K � vne2�������������������
2pmekBTe
p �3�

according to Fridman and Lemaire (1980, Eq. 12). The
factor v is the loss cone ®lling rate, which is a
dimensionless number between 0 and 1 (for example,
Janhunen, 1996).

Notice that although Fridman and Lemaire (1980)
state that their Eq. (12) is valid only for potential drops
that are neither too large nor too small (where ``not too
small'' means much larger than the source plasma
electron thermal energy), the equation is in fact valid
even for arbitrarily small values, and it is a good

numerical approximation to the full nonlinear Knight
formula (Knight, 1973) in almost all practical cases
(Janhunen and Olsson, 1998). Notice also that in the
simulation we need the ``inverted'' current-voltage
relationship, i.e., the voltage as a function of the
current, for this reason it would be impractical to use
the full nonlinear Knight formula.

3 The electromagnetic ionosphere

In the electrostatic ionosphere the magnetosphere gives
the FAC and the ionosphere gives the potential and thus
the convection velocity. An elliptic equation needs to be
solved at the ionospheric plane. We now study what
happens if the cause and e�ect are swapped.

We again start the interaction cycle from the AB, but
instead of computing the FAC from its MHD de®nition
we record the perpendicular component of the plasma
velocity (the convection velocity). Then we compute the
corresponding electric ®eld E � B� v at the AB.

[Actually, we usually include the Hall term in MHD,
thus in principle this equation should read E � B� ve
where ve � vÿ j=�en� is the electron velocity, but the
MHD Hall term can be important only in thin current
sheets, and in the vicinity of the AB it is negligible. The
electron pressure term is mathematically speaking of the
same order as the Hall term, but we neglect it because in
practice the electron pressure is smaller than the ion
pressure. The parallel component of the electron pres-
sure would be important in setting up the polar wind
(Schunk, 1988), so modeling of the polar wind is outside
the scope of the present simulation.]

The electric ®eld then needs to be mapped through
the force-free region to the ionospheric plane, including
also the parallel potential drop. In principle this is a
di�cult problem, since the mapping of a nonelectro-
static electric ®eld is fundamentally ambiguous. The
mapping is unambiguous only in special cases, e.g. in
case of electrostatic ®eld, in which case the mapping of
the vector can be reduced to mapping of a scalar
potential. However, it may not be too bad an approx-
imation for the simulation as a whole to use the
electrostatic mapping even for a nonelectrostatic ®eld,
for the following reason. Errors in mapping a�ect only
the trip from the AB surface to the ionosphere. The
relevant magnetospheric phenomena interacting with
the ionosphere do not take place in the vicinity of the
AB surface (if they do, the AB surface has been placed
at too high an altitude). ``Mapping'' outside the AB
surface is performed correctly anyway, using the full set
of MHD equations. Thus one expects that the errors
introduced by the use of electrostatic mapping do not
lead to a complete omission of some electromagnetic
e�ects in the simulation as a whole, but, at worst, to a
slight or moderate underestimation of the magnitude of
these e�ects.

We now sketch brie¯y how to do the electrostatic
mapping for a general electric ®eld. The electric ®eld E
at AB surface at point ro is used to de®ne a local
potential, U�r� � Uo ÿ E � �rÿ ro�, taking only the ®rst
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term of the Taylor expansion. After linearizing also the
mapping function around ro we get the potential at the
ionospheric plane as a linear function of the ionospheric
coordinates (the function is valid only in the vicinity of
the footpoint of ro), which enables us to get the
corresponding ionospheric electric ®eld vector unam-
biguously. The parallel potential drop, if any, should be
added to the potential at the ionosphere, in the same
way as in the electrostatic approach.

Once the electric ®eld (which is now not necessarily
electrostatic, hence the name ``electromagnetic iono-
sphere'') has been obtained at the ionospheric plane, it is
a straightforward operation to compute the correspond-
ing horizontal current J � R � �E� vn � B�. The diver-
gence of the horizontal current gives the ionospheric
FAC. The FAC can be mapped up to the magneto-
sphere easily because it is a scalar (recall, however, that
we have to multiply with the magnetic ®eld ratio to
account for the changing ¯ux tube cross section). The
remaining problem is how to input the FAC on the AB
to the MHD equations, i.e., how to turn the information
of the FAC into knowledge of the variation ®eld B1

components. We will study this next.
To illustrate the problem, assume ®rst that the AB is

a plane and that the background magnetic ®eld B0 is
perpendicular to it. Choose the coordinate system such
that the AB plane is the XY plane and B0 has only the z
component. In the vicinity of the AB the system is still
approximately force-free (otherwise the AB has been
placed at too high an altitude), thus we have

B0 � B0ẑ; B1 � ẑ � 0; @zB1 � 0; r � B1 � 0 : �4�
The FAC is only a function of x and y. Using

AmpeÁ re's law we obtain:

jk�x; y� � 1

l0
�@xB1y ÿ @yB1x� : �5�

Representing the variation magnetic ®eld B1 as the curl
of a vector potential A�x; y�, we have B1x � @yA,
B1y � ÿ@xA. We obtain

ÿ�@2x � @2y �A�x; y� � l0jk�x; y� ; �6�
i.e., Poisson's equation at the AB surface for A�x; y�. For
this construction to be meaningful we assumed (1) a
planar AB surface, (2) constant B0, (3) B0 perpendicular
to AB, (4) force-free region in the vicinity of AB, (5)
small variation ®eld, jB1j � jB0j.

A more realistic case would be a radial FAC
distribution and spherical AB surface. In this case the
only approximation involved is the assumption that the
FAC ¯ows radially, while in reality it ¯ows more or less
along dipolar ®eld lines. Using spherical coordinates
�r; h;u�, the FAC in this case is given by

jk�r; h;u� �
f �h;u�

r2
r̂ �7�

in order to have r � jk � 0. The vector potential
A�r; h;u� is always given by the explicit integral

A�r; h;u� � lo
4p

Z
d3r0

jk�r0�
jrÿ r0j �8�

(Jackson, 1975), from which it can be seen that the
vector potential is independent of the radial coordinate
r, that is, A�ax� � A�x� for any a > 0, which is also
evident from the scale invariance of the current distri-
bution. The di�erential equation for the vector poten-
tial, ÿr2A � lojk therefore becomes a two-dimensional
equation over the spherical AB surface, the three
components of which are given by

ÿ2Ar ÿ 2
@Ah

@h
� @

2Ar

@h2
� cot h ÿ2Ah � @Ar

@h

� �
ÿ 2

sin h
@Au

@u
� 1

sin2 h

@2Ar

@u2
� ÿlof �h;u� ; �9�

1

sin2 h
ÿAh ÿ 2 cos h

@Au

@u
� @

2Ah

@u2

� �
�2 @Ar

@h
� cot h

@Ah

@h
� @

2Ah

@h2
� 0 ; �10�

ÿ Au

sin2 h
� 1

sin h
2
@Ar

@u
� 2 cot h

@Ah

@u
� 1

sin h
@2Au

@u2

� �
� cot h @Au

@h
� @

2Au

@h2
� 0 : �11�

This is much more complicated than Poisson's equation
in the planar case, but it is still two-dimensional.

The most realistic assumption would be an FAC
distribution following dipolar ®eld lines and the shape of
the AB surface again being spherical. The problem is
again to compute the magnetic ®eld on the AB surface
caused by the FAC distribution. Now we can see that
the problem setup is somewhat ambiguous, because one
has to assume some closure for the FAC current pattern.
For example, assuming that the FAC follows dipolar
®eld lines up to the equatorial plane would create a
nonphysical discontinuity in the current on the equato-
rial plane, as the FAC patterns from the southern and
northern hemispheres would probably not match.
However, it is probable that in most cases the way this
ambiguity is solved has only a small e�ect on the
computed magnetic perturbation on the AB surface,
because the image of the main FAC systems on the AB
surface is rather far from the equatorial plane. Thus, a
possible brute-force method to compute the magnetic
perturbation would be to extend the FAC pattern
threading the AB surface along dipolar ®eld lines and
solving the 3D Poisson equation ÿr2A � lojk in the
near-Earth region. In order to prevent boundaries from
a�ecting the solution at the AB surface, the grid used to
solve this equation should include regions from both
sides of the AB surface, thus it must be a di�erent grid to
that used in the MHD equations.

A remaining problem is how to keep the variation
®eld B1 divergence-free in the vicinity of the AB surface.
Ways to deal with this issue depend on how the
magnetic ®eld is kept divergence-free elsewhere in the
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MHD box. Our current GUMICS-3 simulation solves a
3D Poisson equation at every 8 s as a divergence-
cleaning procedure. Other strategies include the eight-
wave Riemann solver of Powell (Powell et al., 1995),
which allows for nonzero divergence in the MHD
equations but includes terms which should keep its
magnitude small, and the manifestly divergence-free
method of Dai and Woodward (1996), in which the
magnetic ®eld is stored as cell surface averages.

4 Discussion and conclusions

From the physical point of view, the ionosphere and the
magnetosphere should be considered as interacting
systems, which maintain a self-consistent electric ®eld
and current distribution. Thus one may think that the
magnetosphere gives the ®eld-aligned current pattern, to
which the ionosphere responds by giving an electric ®eld
pattern to the magnetosphere (the electrostatic ap-
proach), or one may think that the magnetosphere gives
the electric ®eld pattern, to which the ionosphere
responds by giving the FAC pattern (the electromag-
netic approach). In the former case the ionosphere
drives the magnetospheric (and ionospheric) convection,
whereas in the latter case the ionosphere acts as a source
of FAC. Both approaches are possible, but for realiza-
tion in an MHD simulation, only one of the approaches
can be chosen. Thus far only the electrostatic approach
has been used in actual simulations. It would be
advantageous if also the electromagnetic approach
could be implemented so that the results could be
compared. That might provide us with additional
physical insight.

We investigated the possibility of an electromagnetic
approach. We derived formulas for inputting the FAC
into an approximately force-free MHD region. In the
electromagnetic approach we need not solve an elliptic
equation at the ionospheric plane, but instead we must
solve a Poisson-type equation (which would be exactly
Poisson's equation if magnetic ®eld were radial) at the
AB surface. The computational work associated with
the Poisson-type equation is likely to be somewhat
smaller than the work needed to solve the more general
elliptic equation at the ionospheric plane, which would
mean that the electromagnetic approach could be faster.

Two problem areas remain, which we did not fully
resolve in this paper: the problem of mapping the
electric ®eld (vector quantity) from the AB surface
through the force-free region into the ionospheric plane,
and the problem of keeping the B1 ®eld divergence-free
in the vicinity of the AB surface. The mapping of the
electric ®eld is unambiguous only in the case of
electrostatic ®eld. As a ®rst trial, the electrostatic
mapping could be used, in which case the scheme that
we named ``electromagnetic'' is actually not fully elec-
tromagnetic. However, if the AB surface is not too far
from the ionosphere, as should be the case anyway, the
error made here is likely to be small. The second
problem is how to keep the magnetic ®eld divergence-
free near the AB surface. This is closely related to the

divergence cleaning strategy used elsewhere in the MHD
simulation box and thus it is outside the scope of this
paper. We expect the second problem not to be too
di�cult.

If these problems are reasonably solved, then an
attempt should be made to implement the electromag-
netic approach for comparison purposes. It is too early
to predict now which one of the approaches will turn out
to be preferrable, but in any case the electromagnetic
approach should be investigated further.
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