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Abstract. For more than two decades numerical models
of the Earth's magnetosphere have been used success-
fully to study magnetospheric dynamic features such as
the excitation of ULF pulsations and the mechanism of
®eld line resonance. However, numerical formulations
simplify important properties of the real system. For
instance the AlfveÂ n continuum becomes discrete because
of a ®nite grid size. This discretization can be a possible
source of numerical artifacts. Therefore a careful
interpretation of any observed features is required.
Examples of such artifacts are presented using results
from a three dimensional dipole model of the magne-
tosphere, including an inhomogeneous distribution of
the AlfveÂ n velocity.

Introduction

The Earth's magnetospheric system cannot be described
by analytical models in all of its complexity. Simpli®-
cations are necessary even for the solutions of very
speci®c problems. Nevertheless, early analytical studies
have led to improved understanding of the basic physics
of many magnetospheric processes.

A particularly well-studied aspect of magnetospheric
physics is the theory of magnetohydrodynamic (MHD)
waves. This commonly accepted theory predicts that the
cold magnetized plasma of the outer magnetosphere
supports two di�erent wave modes. One of these wave
modes is the isotropic and non-localized compressional
mode, also referred to as the fast mode or poloidal
mode. The other one is the localized toroidal mode, also
called the AlfveÂ n mode that propagates exclusively
along the ®eld lines. These two modes always couple in a
non-uniform plasma if any wave disturbances are not
fully axisymmetric. Therefore, no pure modes exist in
realistic situations, and the wave systems are complex
with transverse and compressional contributions.

Many analytical studies treat the magnetosphere as a
box with a straight magnetic ®eld topology and ideal
boundary conditions (Radoski, 1971). Because the two
wave modes remain coupled as long as one assumes
nonuniformity of the background conditions, these
studies have been useful in developing a number of
theories, such as the origin of ultralow frequency (ULF)
pulsations (Dungey 1954; Allan and Poulter, 1992, and
references therein), models of instabilities at the mag-
netopause as a possible source of MHD wave excitation
(Parker, 1958; Southwood, 1968), the cavity mode as a
possible explanation for the observed discrete spectrum
of the compressional mode (Kivelson et al., 1984;
Kivelson and Southwood, 1985, 1986; Allan et al.,
1986) and the mechanism of ®eld line resonance (FLR)
as a result of the coupling between the discrete
compressional mode and the AlfveÂ n continuum (South-
wood, 1974; Chen and Hasegawa, 1974a, b; Radoski,
1976). Only a small number of analytical approaches
have been published, taking into account a curvature of
the ambient magnetic ®eld (Hameiri, 1985; Inhester,
1986; Wright and Thompson, 1994; Lifshitz, 1987;
Kouznetsov and Lotko, 1995).

The need to understand wave properties in more
realistic systems led to the exploitation of numerical
models. The simpli®ed box model approximation was
adequate for investigation of further properties of the
MHD wave modes, such as temporal development and
phase mixing (Pritchett and Dawson, 1978; Inhester,
1987; Southwood and Kivelson, 1990; Mann et al.,
1995). More sophisticated models have included the
curvature of magnetic ®eld lines, as for example in the
cylindrical model (Radoski, 1974; Allan et al., 1985,
1986; Allan and Mc Diarmid, 1993), the wave guide
model (Rankin et al., 1993; Wright, 1994), and the
dipole model (Lee and Lysak, 1989, 1991a). The latter is
used for the simulations presented in this study.

Although numerical models have improved the
understanding of magnetospheric features, they still
neglect important properties of the real system, such as
asymmetry of the global structure (the magnetosphericCorrespondence to: M. Stellmacher
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tail is ignored) and proper boundary conditions. The
consequences of using a discretized representation of the
AlfveÂ n continuum because of ®nite grid sizes in numer-
ical models have been studied in much detail (Appert
et al., 1975; Pritchett and Dawson, 1978; Appert et al.,
1984; Lee and Roberts, 1986). The discretized systems
are found to behave like a ®nite number of independent
oscillators instead of a real continuum, and this modi®es
the physics.

Rickard and Wright (1994) have investigated the
relevance of phase mixing in a numerical box model that
includes ®nite grid spacing. They came to the conclusion
that this process leads to a limit on the time one can run
a simulation correctly. This time can be governed by the
phase mixing length, de®ned as the length over which
the phase of neighboring AlfveÂ n waves di�er by 2p,
which is found to decrease with time. The resolution of
this length in the numerical model is one requirement for
an accurate simulation.

This study introduces examples of artifacts caused by
the discretization of the AlfveÂ n continuum. These
artifacts lead to the formulation of a critical time limit
to be used for the simulations, similar to that introduced
by Rickard and Wright (1994). This work investigates in
detail the e�ects of the discretization when the simula-
tion approaches and exceeds this limit.

In a recent study Ding et al. (1995) examined the
excitation of the poloidal mode ®eld line resonance
using a two dimensional ideal MHD model. In their
results they ®nd a slow amplitude modulation in the
transverse components that is caused by beating of two
toroidal oscillations; the modulation period depends on
the number of grid points used in the radial direction.
They acknowledge the fact that, because of the discrete
numerical model, the eigenfunctions associated with the
localized poloidal resonance collapse to grid scale
singular functions. They conclude that ideal MHD
theory is inadequate for this kind of study. We do not
fully agree with this general statement as the results
presented in this work indicate that discrete models
provide reasonable results as long as a certain critical
time limit, which is controlled by the radial grid spacing,
is not exceeded. Mann and Wright (1995) came to a
similar conclusion concerning the study by Ding et al.
(1995) when they discussed the problem of phase mixing
in numerical models.

The study is structured as follows: the following
sections review brie¯y the analytical approach to the
coupled MHD mode problem and describe how the
equations are modi®ed for use in numerical approaches;
the next sections introduce some possible consequences
of the numerical formulation and analyzes artifacts that
arose during runs of the three dimensional dipole model;
®nally the validity of discretized magnetospheric models
in studying ULF pulsations and related phenomena is
assessed.

General analytical approach

Most analytical studies have adopted Radoski's (1971)
box model. This model considers a cold plasma

contained in a straight uniform magnetic ®eld
~B0 � B0ẑ. The plasma density q0�x� is chosen to be a
function of x, the radial direction across the magnetic
shells, in order to retain the coupling of wave modes.
The boundary conditions in the x and z direction are
often assumed to be perfectly re¯ecting. The ®nite length
of the ®eld lines requires quantization of the wave
number kz. No boundaries are assumed in the azimuthal
� y� direction, but the waves have ®nite azimuthal wave
numbers.

Linearized MHD perturbations in a cold plasma
satisfy

r�~b � l0~j �1�

r � �~u�~B0� � @
~b
@t

�2�

q0
@~u
@t
�~j�~B0 �3�

~E � ÿ~u�~B0 ; �4�
where ~B0 and q0 are the background magnetic ®eld and
density and ~j, ~u, ~b and ~E are the perturbations of the
magnetospheric currents, plasma velocity, magnetic ®eld
and electric ®eld, respectively.

By elimination, the following expressions are ob-
tained:
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l0q0
p

being the AlfveÂ n velocity, Ey corre-
sponding to the poloidal mode and Ex to the toroidal
mode.

One possible way to treat these equations is to
employ the Laplace transform on the time variable to
solve the corresponding initial value problem (Sedlacek,
1971; Zhu and Kivelson, 1988). The Green function of
the di�erential equation is constructed, and slowly
decaying quasi-eigenmodes of the system can be inferred
from its singularities.

Another way to deal with the equations is mathe-
matically simpler and has frequently been used to
determine the quasi-eigenmodes (Barston, 1964; South-
wood, 1974; Nishida, 1978). The electric ®eld vector can
be written as

~E � �Ex�x�;Ey�x�; 0� exp�i�kyy ÿ kzzÿ xt�� ; �7�
with the ®eld aligned/azimuthal wavenumber kz=ky .
Equations (5) and (6) become

x2

v2A
� d2

dx2
ÿ k2z

� �
Ey � i ky

d
dx

Ex �8�

x2

v2A
ÿ k2y ÿ k2z

� �
Ex � i ky

d
dx

Ey : �9�
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Note that for axisymmetric disturbances �ky � 0�, the
equations for Ex and Ey decouple. The solution for the
poloidal mode �Ey� satis®es
d2Ey

dx2
ÿ k2y

dM2

dx
1

�M2 ÿ k2z ��M2 ÿ k2y ÿ k2z �
dEy

dx

� �M2 ÿ k2y ÿ k2z �Ey � 0 ;

�10�

where M2�x� � x2=v2A�x� is a function of x (Southwood,
1974).

Assuming the density to vary monotonically with x,
this equation has two singularities of physical signi®-
cance. Where �M2 ÿ k2y ÿ k2z � � 0 the solutions for Ey
change from being oscillatory to decaying exponentially
with distance. This point xt is known as the turning
point of the poloidal mode. Where �M2 ÿ k2z � � 0 �xr�,
the perturbations are found to be in resonance with the
transverse mode (Ex). This is where the ®eld line
resonances occur. A nonmonotonic function for the
density pro®le might result in a larger number of
singularities and more turning points and/or resonance
points.

Solutions of Eq. (10) can be found in the vicinity of
the singularities. Near the turning point xt there are two
independent solutions of the form

u1 � a0 �
X1
n�1

an�xÿ xt�n �11�

u2 � �xÿ xt�2 b0 �
X1
n�1

bn�xÿ xt�3n

( )
; �12�

which are both ®nite at xt.
In the vicinity of the resonance xr a solution can be

found in the form of a superposition of modi®ed Bessel
functions I0 and K0 of order zero (Southwood, 1974)

Ey � A I0�ky�xÿ xr�� � B K0�ky�xÿ xr�� : �13�
However, without further treatment the solutions

become logarithmically in®nite at the singularity. This
causes mathematical problems and is physically not
satisfying. Obviously the ideal MHD equations are not
valid around this singularity. The most commonly used
resolution is to introduce a complex frequency
x � xr � ixi, with a small positive imaginary part xi
(Southwood, 1974; Bertin et al., 1986). This can be
thought of as describing dissipation e�ects that prevent
an in®nite increase of the amplitude at the resonance
point. At the same time, dissipation also causes a
broadening of the resonance width. Dissipation e�ects
are equivalent to sinks of electromagnetic energy, which
can, for example, be caused by a permeable magneto-
pause or plasmapause, the resistive ionosphere or by
collisionless damping in the real magnetosphere. Energy
considerations show that normal mode solutions, even
in a simpli®ed system like the one used here, are not
possible for xi 6� 0. The limit where xi ! 0, however, is
mathematically allowed. The poloidal mode still damps,
for example through phase mixing.

The solutions described have been called quasi-
eigenmodes. They decouple in certain limits (m � 0 or

m!1, m being the azimuthal wave number of the
perturbations) and become true eigenmodes, but they
are generally coupled. However, theoretical studies have
shown that this coupling is a one-way process. An
energy source, usually of compressional nature due to
instabilities at the magnetopause or pressure pulses in
the solar wind, excites a discrete poloidal mode spec-
trum. These compressional waves, which are oscillatory
outside their turning points and decaying within, are
being damped with time, even in the absence of
dissipation, through the coupling to the toroidal mode
(Radoski, 1974; Appert et al., 1984; Kivelson and
Southwood, 1985). They excite the AlfveÂ n continuum
(Bertin et al., 1986). FLRs now occur, where the
frequency of the poloidal mode matches an eigenfre-
quency of the ®eld lines. Previous theoretical work has
shown that at the limit of long times the energy of the
compressional oscillations couples irreversibly into the
excited FLRs (Radoski, 1974, 1976; Lee and Roberts,
1986; Wright, 1994). In the absence of dissipation
mechanisms, the energy is trapped in the toroidal mode.

Numerical approach

The introduction of dipole magnetic geometry greatly
complicates the analysis of MHD wave properties. Even
early work (Cummings et al., 1969) required numerical
solutions to identify wave structure and resonant
frequencies. More recently, a number of di�erent
numerical models of waves in a dipole magnetosphere
have been investigated, but most of them use basically
the same simpli®cations and techniques. The model used
for the simulations presented in this study includes a
three dimensional dipole magnetic ®eld as well as
inhomogeneous plasma conditions. It was ®rst intro-
duced by Lee and Lysak (1989) as a two dimensional
dipole model. Later Lee and Lysak (1991a) published
the ®rst results of the extended three dimensional
magnetosphere. Figure 1 shows a meridional plane with
the dipole coordinates �l̂; m̂; /̂�, where l̂ is directed along
the ®eld lines, m̂ is normal to the ®eld lines pointing
outward and /̂ is the usual azimuthal direction
�l̂ � m̂� /̂�.

Fig. 1. The dipole magnetic ®eld geometry with the coordinate
system and the boundaries used in this model
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The boundaries of the model are the plasmapause at
L � 5 (L is the Mc Ilwain parameter), the magnetopause
at L � 10 and the ionosphere at constant l at approx-
imately 1 Earth radius. All boundaries are considered as
perfect re¯ectors due to large AlfveÂ n velocity gradients
and perfect conductivity, respectively. The density q0
and the ambient magnetic ®eld~B0 are inhomogeneous in
the meridional plane, but symmetric in the azimuthal
direction. This model evidently includes ®eld line cur-
vature, varying ®eld line length and inhomogeneity of
both the magnetic ®eld ~B0 and the density q0.

The currents perpendicular to the background mag-
netic ®eld can be written in the form:

q0
@~u
@t
�~j�~B0 �14�

) q0
@�~u�~B0�

@t
� �~j�~B0� �~B0 �15�

)~j? � 1

v2Al0

@~E?
@t

: �16�

The di�erential equations solved in the model are
derived from the linearized MHD- and Maxwell-equa-
tions for the cold plasma of the outer magnetosphere.
The currents in Ampere's law are replaced by Eq. (16).

r�~E � ÿ @
~b
@t

�17�

r �~b
���
?
� 1

v2A

@~E?
@t

�18�

A ®eld aligned electric ®eld component is neglected by
assuming in®nite conductivity of the plasma. In dipole
coordinates, Eqs. (17, 18) may be written as
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where hl � r3=
�����������������������
1� 3sin2H

p
, hm � r2=cosH

�����������������������
1� 3sin2H

p
and h/ � rcosH are the metric coe�cients of the dipole
coordinate system and E�i � hiEi and b�i � hibi. For the
numerical solution of these di�erential equations,
describing an initial-value problem, a modi®ed stag-
gered leapfrog scheme is used, which gives a second
order accuracy in space and time. A more detailed
discussion of the numerical model is given by Lee and

Lysak (1989, 1990, 1991a, b) and Lysak and Lee
(1992).

The AlfveÂ n continuum, which is the continuous
spectrum of the toroidal mode, is produced by the
change of the length of the ®eld lines as well as the
continuous variation of the AlfveÂ n velocity in the radial
direction. Because of a ®nite grid size in numerical
models, the continuously changing eigenperiod of the
®eld lines turns into a step function, as illustrated in
Fig. 2. The dotted line shows the continuous function of
the analytical approach, whereas the solid line shows the
step function of the numerical model. This discretization
in numerical models a�ects the resolution of the
singularities in the system. Resonance-like structures
turn out to be nearby ®eld lines (grid points), excited
through the ®nite bandwidth of the compressional
mode. The exact position of the resonance cannot be
determined numerically, it lies somewhere between the
two grid points with the most singular behavior.

The solutions found in the discretized numerical
system are `real' eigenmodes, in contrast to the quasi-
eigenmodes found in analytical systems. The `real'
eigenmodes couple in a time dependent system and
decouple for m � 0 �@=@/ � 0�. However, the coupling
appears to be somewhat di�erent from the one obtained
in the analytical approach. The continuum in the
numerical models is represented by a system of single
oscillators. The coupling in such a system is reversible,
hence the energy cannot be trapped in the AlfveÂ n
continuum.

Consequences of the discretization

For generating wave disturbances, a compressional
impulse �E/� of the form
E/;0 � A0 sin�x0t� cos�m/� exp�ÿAll

2 ÿ A//2 ÿ Att�;
�24�

is applied at the magnetopause. Here x0 � 2p=T0 is the
frequency of the impulse, m is the azimuthal wavenum-

Fig. 2. The fundamental eigenperiod of the ®eld lines in a continuum
(dotted line) and in a discretized model plotted versus the equatorial
distance to the ¯ux tube in RE
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ber and A0;At;Al;A/ are constants. For the simulations
in this study T0 � 50 s and m � 3 was chosen. The
source is localized around the equatorial plane, but
global in the azimuthal direction, which prevents side
e�ects due to an imhomogeneous azimuthal propaga-
tion of the waves. The impulse decays through
exp�ÿAtt� and is negligible after approximately 12 cycles
of the wave (600 s).

The resolution of the grid used in the dipole model is
sixty-four grid points along the ®eld lines, 64 grid points
in the azimuthal direction and either 41 or 82 grid points
in the radial direction across the magnetic shells. This
last resolution determines the discretization of the
AlfveÂ n continuum and changes the di�erence in the
eigenfrequencies Df between two radially neighboring
®eld lines.

The energy density (energy per unit L) of poloidal
and toroidal modes versus the radial distance is shown
in Fig. 3 for both grid resolutions. The temporal mean is
taken over the total simulation time (1 h). The kinetic
energy density at each time step is obtained from

Etor � 1

2l0

Z Z
E2

m

v2A
� b2/

� �
A�l; m� dld/ �25�

Epol � 1

2l0

Z Z E2
/

v2A
� b2l � b2m

 !
A�l; m� dld/ : �26�

A�l; m� includes geometric factors and the metric
coe�cients. The electric energy of the modes
(Eel / E2�vA=c�2) is negligible in this system. It should
be emphasized that as the two modes always couple the
classi®cation of the wave modes by their dominant ®eld
components is an approximation.

It is clear that as the resolution improves, more
resonances can be resolved and the AlfveÂ n continuum
shows a more `singular' behavior. The amplitudes of the
resonances increase as their widths decrease. The

envelope of the poloidal mode on the other hand does
not change signi®cantly with improved spatial resolution.

The spatial resolution of the AlfveÂ n continuum
depends on the radial grid size. Therefore the results
shown in Fig. 3 are not surprising. The time dependence
of the solution on the other hand, exhibits unexpected
features. Figure 4 displays the energy density of both
wave modes as well as their sum (the total energy of the
system), now integrated over the whole magnetosphere
as a function of time. Forty-one grid points were used
across the magnetic shells in the radial direction for
Fig. 4a and 82 for Fig. 4b.

The total energy in the model is much higher in the
high resolution model, because the ®ner grid allows
shorter wavelengths to be excited, whereas these cannot
be represented on the larger grid. The numerical scheme
produces no amplitude dissipation, therefore no wave-
lengths of any spectral band are being damped. Because
the initial energy source used for these simulations
allows a very broad frequency band to be excited, there
is considerably more energy in the higher resolution
case. Therefore a direct comparison of the magnitudes
of the total energy in the model is not sensible and
results such as amplitudes or energy density cannot be
interpreted quantitatively.

Fig. 3. The energy density pro®le of the toroidal mode for the high
resolution grid (solid line), the low resolution grid (dotted line) and the
poloidal mode (dashed line) over the radial distance, integrated over
each magnetic shell and averaged over the total simulation time. Note
the logarithmic scale

Fig. 4a, b. The temporal development of the total energy of the system
(solid line) and the energy of the toroidal mode (dotted line)/poloidal
mode (dotted-dashed line) in the a low resolution grid and b the high
resolution grid
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It should be noted that the divergence of the
magnetic ®eld is of the order of 10ÿ15 relative to the
magnitude of the ®eld and a typical scale length for both
grid resolutions. This also indicates a good stability of
the numerical scheme, similar for both resolutions.

The evolution of the energy can be separated into
four phases (see vertical lines in Fig. 4). In phase 1 the
compressional mode couples all of its energy almost
immediately into the toroidal mode and thus into the
®eld line resonance, as expected according to theoretical
studies (e.g., Radoski, 1976; Wright 1994). In phase 2
the FLR is established and there is no more compres-
sional energy available in the system. During phase 3 the
FLR couples its energy back into the poloidal mode.
This energy conversion reaches a maximum and recurs
periodically. In phase 4 the poloidal mode has gained
enough energy to excite toroidal modes anew.

From the energy density pro®le in Fig. 3 it is known
that most of the toroidal energy lies in the magnetic
shells next to the FLR at L � 8:3. Thus these shells are
expected to be mainly responsible for the signatures in
the temporal development of the toroidal energy.
Investigations of spatial energy distributions (not
displayed here) con®rm this. Only the magnetic shells
near L � 8:3 lose energy to the global compressional
mode at the observed time.

How does the variation of the grid size a�ect the time
scales of these phases? Phase 1 remains unchanged. The
dominant mode in this phase is the global compressional
mode, which does not depend on the grid size in the
radial direction. The time scale of phase 2 more than
doubles when halving the grid size. Phase 3 is
approximately the same and phase 4 remains un-
changed.

The physical parameter that changes with the grid
size and that can be related to the wave modes is the
di�erence of the eigenfrequencies Df of the radially
neighboring ®eld lines. On the two shells across the FLR
at L � 8:3 mainly the third harmonic modes are present.
For the case of Fig. 4a (41 grid points) this implies Df �
0.76 mHz. Assuming a direct interaction between the
azimuthal perturbations on two adjacent ®eld lines, or
more generally speaking between two oscillators in a
coupled system, an empirical estimation of the cycle
time of the mode conversion (onset of phase 4) is given
by:

Tcycle � �f2 ÿ f1�j jÿ1� Df12j jÿ1; �27�

where f1 and f2 are the frequencies of the perturbations
or the oscillators. The cycle time is equivalent to the time
the two waves need to go through one phase cycle
(starting in phase, going out of phase, ending in phase),
and is therefore related to the time-variation of the
phase di�erence DU between the perturbations on
the two ®eld lines. This calculation is consistent
with the estimation of the cycle time in Fig. 4a, where
the maximum of the mode conversion is reached after
�1300 s. For the case of Fig. 4b (82 grid points), the
cycle time is estimated as �2375 s, and Df � 0.42 mHz
at that particular resonant position in the model. Note

that it is not necessarily the fundamental mode of the
®eld lines that determines the cycle time, but the
frequencies of the excited harmonics.

This empirical result is similar to the critical time
theoretically governed by the idea of resolving the phase
mixing length proposed by Wright (1994) and Mann
et al. (1995). Rickard and Wright (1994) considered the
resolution problem in an open cavity/wave guide in
terms of the phase mixing length Lph explicitly and gave
the criterion:

dx < Lph � 2p=�t dxA=dx��) t < Df12j jÿ1� tph; �28�
where dx is the grid spacing in the radial direction and
xA is the AlfveÂ n frequency of the ®eld line. The time
limit tph in which simulations can be run accurately is
now reached when the phase mixing length equals the
grid spacing. A detailed explanation of the physical
e�ect when the simulation approaches and exceeds this
limit will be given in the following paragraphs.

To investigate the cause of this energy conversion in
more detail, the magnetic ®eld components were tracked
at locations near the equator on the two magnetic shells
closest to the FLR at L � 8:3, using the higher
resolution grid. The data was Fourier analyzed
�Dt � 3 s; n � 64; shift � 16� and selected for the
frequency interval around 20 mHz, which contains the
third harmonic of the eigenfrequency of that particular
®eld line. Figure 5 displays amplitude and phase of the
perturbations on the shell with resonant frequency
closest to the driving frequency. Phases are shown
relative to a speci®cally chosen reference signal, of all
three magnetic components versus time. It is not
necessary to take the electric ®eld components into
account, because Em exhibits a behavior qualitatively
identical to b/, as well as E/ to bm. The phase is plotted
only at times when the amplitude exceeds a speci®ed
minimum value.

The amplitudes of the magnetic ®eld components
evolve in the same way as the total mode energy. The
phase of the perturbations in all components is
controlled by the dominant mode. The dominant mode
is the mode which is driving the system at any given
time.

As the global compressional mode is dominating in
phase 1, the phase remains constant for all magnetic
perturbations. During phase 2 the amplitude of the
azimuthal component stays constant because of the lack
of available compressional energy. The amplitude of the
radial perturbation remains ®nite because of contribu-
tions from the AlfveÂ n mode. The mismatch between the
eigenfrequency of the ®eld line (toroidal mode fre-
quency) and the poloidal mode frequency in this
discretized system causes its phase to alter gradually.
The compressional components display changes in
phase during phase 3, as the toroidal mode is now
driving the system and is coupling its energy back into
the poloidal mode. In phase 4 the ®eld line resonance is
excited anew with a shifted phase.

To con®rm the idea that the cycle time is controlled
by the phase cycle of the standing waves on the two
critical shells closest to the FLR and to learn more
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about the relationship between amplitude and phase, a
cross-phase analysis was performed for each of the
magnetic ®eld components. Time series from those two
magnetic shells, again registered near the equatorial
plane, were Fourier analyzed. The phase di�erence DU12

between the perturbations was obtained by

DU12 � atan
Re1Im2 ÿ Im1Re2
Re1Re2 � Im1Im2

� �
�29�

(e.g., Waters et al., 1991). Figure 6 displays DU12 in the
selected frequency band around 20 mHz for all magnetic
components. In bl the phase di�erence remains zero at
all times, which is consistent with the model of global
compressional eigenoscillations of the magnetosphere.

The phase di�erence of the perturbations in bm shows
in¯uences of both wave modes; its frequency varies with
radial distance. Near the resonance it is closely related to
the frequencies of the pure AlfveÂ n wave, but further
away the compressional mode dominates and the
frequency of bm is similar to that of bl.

A more interesting feature is the phase behavior of
b/. Both ®eld lines are initially driven in the same
direction by the source. Because the resonant frequency
di�ers on the two selected shells, DU/12 changes linearly
in time, as indicated by the solid line in Fig. 6. Before the
perturbations of the two ®eld lines come back into
phase, the energy conversion sets in and DU/12 decreases
slowly until the maximum of the energy exchange is

reached. When the standing AlfveÂ n waves build up
again, the phase di�erence again grows almost linearly
as in the initial cycle. The nonlinear behavior during the
energy conversion is produced by the aforementioned
phase shifts on both magnetic shells on slightly di�erent
time scales.

It is interesting to consider why the amplitude of b/
decreases as the perturbations return to being in-phase.
The behavior can be understood in terms of the
perturbation currents given by Eq. (1). Standing AlfveÂ n
waves drive ®eld aligned currents, whilst the poloidal
mode currents close in circuits perpendicular to
~B0 �r? �~j � 0�. The ®eld aligned currents

jk � 1

l0

1

hmh/

@b�/
@m
ÿ @b�m
@/

� �
�30�

are mainly caused by the gradient of b�/ in the radial
direction, because @b�/=@m� @b�m=@/ for low azimuthal
wave numbers near the resonance. The further out of
phase the perturbations on the two ®eld lines next to the
FLR are, the larger the gradient @b�/=@m. When they are
in phase, the gradient is at an minimum. As soon as the
phase di�erence is smaller than p=2, the ®eld aligned
currents diminish and so does the amplitude of the ®eld
line resonance.

In an ideal continuum the FLR corresponds to a
delta-function. The radial gradient of b�/ is always large
near the resonance and independent of the phase. In

Fig. 5. The temporal develop-
ment of amplitude (solid line) and
phase (symbols) of the magnetic
®eld components for a selected
frequency band around 20 mHz
that includes the resonant fre-
quency in the system (high reso-
lution grid)
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a discretized system, however, where only samples of the
gradient are considered, @b�/=@m depends strongly on the
relative phase and can drop to small values.

Possible misinterpretations

The discretized system produces apparent features that
can be linked to observations but are not physically
realistic in their origin. An interesting consequence of
the discretized model is illustrated in Fig. 7, which shows
the magnetic ®eld components at a grid point on the
magnetic shell closest to the FLR near the equatorial
plane. The simulation in this case was done with the
lower resolution grid (41 grid points along m). The time
series displays a few commonly observed features of
ULF pulsations. One is wave packeting, which has been
observed many times (Waters et al., 1991; Lin et al.,
1992; Liao et al., 1994). Possible explanations for wave
packeting of observed magnetic (and electric) ®eld
amplitudes are, for example, short impulsive energy
sources (Waters et al., 1991). Others (Singer et al., 1979)
interpret the structures as spatial rather than temporal
changes due to the satellite ¯ying through a resonance or
a ¯ux tube. However, in the numerical system described
here, the wave packeting is produced by the energy
conversion in a discretized system. The time scales of the
packeting clearly relate to the described mechanism.

Allan et al. (1985) and Allan and Poulter (1989) have
shown amplitude modulations near a resonance as a
result of beating due to the frequency mismatch between
the driving cavity mode and the natural AlfveÂ n frequency
on one particular ®eld line. In contrary the interaction
presented in this work is caused by the frequency
mismatch between two azimuthal perturbations on two
neighboring ®eld lines. The beating e�ect introduced by
Allan and coworkers is not visible in these simulations,
as the amplitude of the driving cavity mode reduces to
small values, compared to the amplitude of the toroidal
mode, long before a clear beating e�ect can occur.

Another feature commonly discussed in connection
with observed wave packets is the change of phase of the
perturbations between two packets. This type of phase
shift is referred to as phase skip. Again several possible
explanations have been proposed, such as the presence
of multiple, decoupled source mechanisms (Menk and
Yumoto, 1994), or one could imagine the existence of
multiple spatial structures with distinguishable proper-
ties. Again, the phase skips in the time series in Fig. 7 are
clearly related to the periodic mode conversion, an
artifact produced by the discretization of the continuum.

Assessment and conclusion

In the last sections some consequences of the discretiza-
tion of the AlfveÂ n continuum in numerical models were

Fig. 6. The temporal development
of the phase di�erence between two
magnetic ®eld perturbations (sepa-
rately for each component) across
the FLR for a selected frequency
band around 20 mHz that includes
the resonant frequency in the sys-
tem (high resolution grid). The solid
line in the lower panel indicates a
purely linear phase shift between
the two perturbations
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illustrated and the important role of the grid dimensions
in the radial direction was emphasized. Grid sizes along
the ®eld lines and in the azimuthal direction do not
control the response of the system. They only have to be
selected to satisfy the numerical stability criteria but
cause no further problems. The question that naturally
arises at this point is: which results from numerical
models remain valid?

The numerical model used in this study has produced
many useful and commonly accepted results that explain
a lot of features connected with ULF pulsations and
®eld line resonances (Lee and Lysak 1989, 1990,
1991a, b). The artifacts shown in the previous section
only occurred when the duration of the simulation was
extended over many wave cycles. However, the results
appear to be realistic within the time limits controlled by
frequency di�erence between azimuthal magnetic ®eld
perturbations on two radially neighboring ®eld lines
across a dominant FLR. The time limit can be under-
stood as a critical time of the model, and can roughly be
estimated by:

Tcrit � 3

4
f2 ÿ f1j jÿ1 �31�

This corresponds to the time when the azimuthal
magnetic perturbations are less than p=2 out of phase.
The ®eld aligned currents, controlled by the radial
gradient of the azimuthal magnetic perturbations across

the dominant FLR, begin to diminish and the toroidal
mode starts to couple its energy back into the compres-
sional mode. Note that this critical time di�ers from the
time limit governed from the phase mixing criterion (28)
by the factor 3/4. The critical time introduced here
indicates the beginning of the diversion of the simulation
from the true solution.

The analysis discussed so far dealt with a special case
in which only one localized ®eld line resonance was
important. This is not always the case. In complex
systems, such as this three dimensional dipole model, a
small change of the background conditions and di�erent
forms of initial energy sources can produce a large
number of FLRs distributed in radial distance as well as
over a wide frequency bandwidth. If there is more than
one FLR with considerable amplitude, the artifacts due
to the discretization might not appear in investigations
of the global energy or other global features. In general
the critical time could be governed by the largest
frequency di�erence appearing in the model even if this
was between nonresonant ®eld lines. However, the e�ect
of the artifact on the energy conservation in the toroidal
mode depends on the amplitude of the transverse
oscillation and might be smaller if the nonresonant
oscillations had smaller amplitudes.

The fact has to be considered that after the critical
time the global compressional mode spreads its energy
throughout the model. The problem ceases to be
localized. FLRs at many positions absorb energy on

Fig. 7. Time series of the magnetic
®eld components at a grid point
near the equatorial plane on the
magnetic shell closest to the ®eld
line resonance (low resolution grid)
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di�erent time scales, unless the eigenperiod is a linear
function of the radial distance. Therefore, even if the
system did seem to recover to its original state at a time
exceeding Tcrit, it would have no relevance to the true
solution.

Another point to be considered for a discretized
system is whether the properties and the behavior of
®eld line resonances are modi®ed, if the actual resonant
frequency lies between two grid points. The discrete
spectrum of the compressional mode, which is respon-
sible for the excitation of the AlfveÂ n waves, has a ®nite
bandwidth in numerical models as well as in the real
magnetosphere, which decreases in time with tÿ1 (Mann
et al., 1995). If the eigenfrequencies of the resonant
shells lie within this bandwidth, it is valid to represent
the coupling to the localized resonances with the model,
again provided t < Tcrit. The exact frequency and posi-
tion of the nominal maximum of the FLR in numerical
models can only be found through a careful investigat-
ion of the frequency spectrum of bl, the purely
compressional component that excites the FLR.

The ®rst and most obvious solution to avoid side
e�ects of the discretization of the AlfveÂ n continuum is to
simply cut o� the simulations before the critical time is
reached. An increase of the number of grid points used
to represent the continuum in the radial direction would
improve the quality of the model during times shorter
than Tcrit (although it is still a discretization), but the
even more important improvement would be that it
extends the time limit in which results can be used for a
proper interpretation. The consideration of dissipation
mechanisms would result in a better representation of
the real magnetospheric system, as dissipation broadens
the bandwidth of the toroidal spectrum in a natural way
and FLRs are resolved more correctly even with only a
few grid points. Damping can naturally limit the time
over which the excitation is present. A resolution of the
grid high enough to guarantee that ®eld line resonances
decay in times small relative to Tcrit would yield results
independent of the discretization.
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