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Abstract. Nongyrotropic (gyrophase bunched) ion dis-
tributions in a magnetoplasma are studied by analytical
methods and by two-dimensional hybrid code simula-
tions. Nongyrotropy may not occur in a plasma being
simultaneously homogeneous, stationary, and solenoi-
dal in phase space. A detailed study is performed for a
homogeneous and stationary plasma with sources and
sinks in phase space. The analytical investigation cast in
the framework of linearized Maxwell-Vlasov theory
yields a coupling of low-frequency left-handed, right-
handed, and longitudinal modes. Nongyrotropic ion
distributions are unstable; they excite left-handed waves.
The growth rate is comparable to that of the ion ring
instability. The hybrid code simulation study con®rms
the expected propagation direction parallel to the
background magnetic ®eld. Three di�usion processes
are studied: arc lengthening, arc broadening, and arc
radius decreasing corresponding to particle energy
di�usion. The characteristic di�usion time-scales are
found to be of the order of 101 wave cycles.

1 Introduction

Distribution functions in magnetoplasmas have been
extensively studied for several years. These investigat-
ions were, however, focused on distribution functions of
the type F �vk; v?�, where velocities occur both parallel
�vk� and perpendicular �v?� to the background magnetic
®eld. Such distributions are axially symmetric with
respect to the magnetic ®eld and are also termed
gyrotropic. When this symmetry is broken, the distri-
bution becomes gyrophase dependent or nongyrotropic.

Nongyrotropy always plays a role when the inhomo-
geneity scale for plasma interaction processes is smaller
than the gyration radius of the corresponding charged
particle or when the nonstationary scale is shorter than
the gyration period. Another situation for the occurence

of nongyrotropy occurs when particle sources and sinks
are present in phase space.

Nongyrotropic distributions have been found in
several processes in extraterrestrial plasma. Important
examples are collisionless shock waves and the interac-
tion of the solar wind with comets. At collisionless
shocks nongyrotropy has been detected in the electron
population as well as in the ion components (Gosling
et al.,1982; Thomsen et al., 1985; Anderson et al., 1985;
Sckopke et al., 1990; Fuselier et al., 1990). The interac-
tion of the solar wind with cometary ions may also drive
nongyrotropy in the cometary ion component (Mots-
chmann and Glassmeier, 1993; Neubauer et al., 1993;
Glassmeier and Neubauer, 1993; Coates et al., 1993).
Furthermore, nongyrotropy has been found in the
magnetosphere (Mauk et al., 1982) and in the plasma
environment of the space shuttle (Cairns, 1990).

The fundamental process for the generation of
nongyrotropic distributions is similar in all the afore
mentioned situations. Burst-like groups of charged
particles move with ®nite velocity perpendicular to the
magnetic ®eld. The particles are picked up as they gyrate
around the magnetic ®eld. If the spatial extension of the
particle group is smaller than the circumference of the
gyration orbit, a nongyrotropic distribution is generat-
ed. The required relative velocity may be caused by
di�erent mechanisms. At collisionless shocks this veloc-
ity results from specular re¯ection of the particles. The
re¯ected particles run in the opposite direction to the
incoming plasma, and are de¯ected by the perpendicular
component of the magnetic ®eld, thereby forming a
nongyrotropic distribution in the upstream region. For
heavy ions another mechanism exists to form nongyrot-
ropy at shocks. At multi-ion shocks (Motschmann et al.,
1991) the velocity loss for heavy ions is smaller than for
the protons, which constitute the major component.
Thus downstream the heavy ions are faster than the
protons and also the magnetic ®eld, as the magnetic ®eld
is mainly frozen in the major proton component. The
heavy ions are picked up by the magnetic ®eld and may
form a nongyrotropic distribution. In the interaction

Ann. Geophysicae 15, 603±613 (1997) Ó EGS ± Springer-Verlag 1997



between the solar wind and plasma emitted from a
comet, the cometary ions just have the solar wind
velocity when they are ionized. A perpendicular mag-
netic ®eld picks up the ions and directs them to a
gyration orbit. If this process is restricted to small
regions or to short time-scales, as for comet P/Grigg-
Skjellerup (Motschmann and Glassmeier, 1993), a ring
distribution is ®lled up only incompletely, yielding a
nongyrotropic distribution.

The ®rst theoretical studies of nongyrotropic distri-
bution functions were carried out in the framework of
linear dispersion theory (Sudan, 1965; Fredricks, 1975;
Brinca et al., 1992; Motschmann and Glassmeier, 1993).
This analysis provides us, besides the growth rate of
instability, another remarkable result: nongyrotropy
couples modes which are decoupled in the correspond-
ing gyrotropic medium. Brinca et al. (1992, 1993) went
more deeply into this coupling process by carrying out a
particle simulation study for nongyrotorpic electrons.

So far the studies of nongyrotropy have started from
homogeneous but nonstationary background plasma
where in phase space the ensemble of gyrophase
bunched particles gyrates around the magnetic ®eld. In
the present paper we compare this nonstationary back-
ground state with other studies. In Sect. 2 it is discussed
that nongyrotropy is also possible for stationary but
inhomogeneous plasmas. Furthermore, nongyrotropy
may be maintained even for homogeneous and station-
ary background with particle sources and sinks in phase
space. A study of the mixed case including all conditions
simultaneously is given by Cao et al. (1995).

In Sect. 3 we study linear dispersion of nongyrotropic
ions which are embedded in a gyrotropic electron-
proton background, and discuss their stability. We begin
with a nongyrotropic fundamental state which is not
rotating in phase space but maintained by a steady
injection and relaxation of ions. This zero-order state is
di�erent from the rotating nongyrotropy studies by
Sudan (1965), Brinca et al. (1992), and Motschmann and
Glassmeier (1993). We show that for the conditions
discussed in our study the stability characteristics of
nongyrotropic distributions are not fundamentally dif-
ferent from the gyrotropic ones. The degree of the
nongyrotropy-driven coupling of the fundamental
modes (L-, R-, P-mode) is strongly determined by the
density ratio of the nongyrotropic component compared
to the background plasma density. Coupling is stronger
at higher nongyrotropic densities.

In Sect. 4 the evolution of nongyrotropy in¯uenced
by quasi-linear di�usion processes is studied (Kafemann
and Motschmann, 1995). To do this, a spatial two-
dimensional hybrid code simulation is used. (Scholer
et al., 1993). The simulation is initialized with a
symmetric nongyrotropic ion distribution in a gyrotro-
pic proton background. Symmetry is used to suppress
any zero-order currents in the system. The rotating
nongyrotropy is not identical with the situation discus-
sed in Sect. 3. However, the intention of the simulation
is to study the di�usion of the nongyrotropic distribu-
tion and the saturation of the instability. Imaginable
characteristic di�usion processes are arc lengthening

(gyrophase di�usion), broadening of the arc, and energy
di�usion. All scales were found to be in the order of 101

wave cycles. The di�usion is accompanied by the
saturation of the instability. The saturation level is
rather low �jdB=B0j2 � 1�. This is because the di�usion
increases the plasma beta and the growth rate is strongly
decreased.

2 Unperturbed nongyrotropic states

We assume a frame in which the unperturbed back-
ground magnetic ®eld is directed along z : B0 � �0; 0;B0�.
Wave propagation is studied only parallel to B0. Thus
the wave vector reads k � �0; 0; k�. In Sect. 4 the two-
dimensional simulations will con®rm that this restriction
is justi®ed. Thus a particle gyrates in the x-y-plane. A
particle bulk velocity parallel to B0 is suppressed.

The Vlasov equation of the undisturbed nongyrotro-
pic plasma component F0 extended by sources and sinks
then becomes

@t � v@x � q0
m0
�v� B0�@v

� �
F0 � q�x; v; t� ÿ l�x;v; t�: �1�

The source term we write in the form

q�x;v; t� � qr�x; t�qv�vk; v?;/�: �2�
For the loss term we assume the simple case of

l�x;v; t� � F0
s
; �3�

where s is a characteristic relaxation time for the non-
gyrotropic particles. With X0 � q0B0=m0 �q0: charge,
m0: mass of the nongyrotropic particle), from Eq. (1) it
follows that

�@t � v@x ÿ X0@/�F0 � qr�x; t�qv�vk; v?;/� ÿ F0
s
: �4�

This equation can be solved by standard methods;
neglecting the loss term it was carried out by Neubauer
et al. (1993); the solution of the full equation is given by
Cao et al. (1995). Both papers treat the case of nongy-
rotropy at a weakly active comet where Eq. (4) appears
most suitable to describe the distribution of outgassed
cometary ions.

Equation (4) contains the impossibility of a nongy-
rotropic unperturbed state which is simultaneoulsy
stationary, homogeneous, and source or sink free.
Now we discuss the cases which may be realized in a
plasma in separate manner.

Case 1 Homogeneous and stationary nongyrotropic
unperturbed state with source and sink in phase space
From Eq. (4) we get

@/F0 ÿ F0
X0s
� ÿ qrqv

X0
; �5�

qv is separated into qv � qg�vk; v?�q/�/�. The solution of
Eq. (5) may be written in the form
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F0 � ÿ qrqg

X0

Z/

q/�/0 � exp /ÿ /0

X0s

� �
d/0: �6�

Without loss of generality we choose the entry point of
the injected ions at / � 0, for which q/ � d�/�. Thus
Eq. (6) yields

F0 � ÿ qrqg

X0
exp

/
D

� �
; / � 0: �7�

The quantity D � X0s is the characteristic arc length.
The distribution is sketched in Fig. 1a.

Case 2 Nonstationary, homogeneous, and source/sink free
nongryotropic unperturbed state
For this case Eq. (4) becomes

�@t ÿ X0@/�F0 � 0; �8�
with solution

F0 � F0�/� X0t�: �9�
This describes the gyration of the nongyrotropic particle
ensemble with frequency X0. This distribution turns up
after a temporary particle injection is ®nished. Its
behavior is sketched in Fig. 1b.

Case 3 Inhomogeneous, stationary, and source/sink free
nongyrotropic unperturbed state
For this case Eq. (4) may be written as

�v@x ÿ X0@/�F0 � 0: �10�
Solving this we derive

F0 � F0 x� v?
X0

sin/; y ÿ v?
X0

cos/; z� vk
X0

/

� �
:

�11�
This describes the spatial gyration of the nongyrotropic
particle ensemble with curvature radius v?=X0 depend-
ing on position. A simple example with a spatial
gradient of the magnetic ®eld along x is sketched in
Fig. 1c. For x < 0 the magnetic ®eld vanishes and the
particles move straight on. At x � 0 the particles enter
the region of ®nite magnetic ®eld, where they are forced
to gyrate. The particles are turned back and leave the
magnetic ®eld region. Within the layer where the
particles are turned back a nongyrotropic distribution
is formed. The layer-intergrated distribution is sketched
in the lower part of Fig. 1c.

The nongyrotropic distribution functions shown in
these three cases, as well as combinations of them,
satisfy the unperturbed Vlasov equation. In general they
carry a current. This situation would not allow a simple
unperturbed state as a solution of Maxwell's equations.
The current is

j0x � q0

Z
vxF0d3v /

Z
cos/F0�vk; v?;/�d/;

j0y � q0

Z
vyF0d3v /

Z
sin/F0�vk; v?;/�d/:

�12�

The right-hand terms vanish only when the distribution
is symmetric with respect to /: i.e., of the form

F0�/� � F0�/� p�: �13�
An example of such a phase-space symmetry is sketched
in Fig. 2. For our fundamental theoretical studies we
suppose this symmetry; in real applications, however,
this symmetry is hardly ever found. For such unsym-
metric situations the restriction to low densities of the
nongyrotropic species with respect to the background
density keeps the current small so that it may be
neglected.

3 Dispersion theory for waves in nongyrotropic plasmas

We now study the propagation of waves parallel to the
background magnetic ®eld in a nongyrotropic plasma in
the frame work of linear Maxwell-Vlasov theory. The

Fig. 1. a Nongyrotropic distribution with an ion source and an ion
sink in a phase space. b Nonstationary nongyrotropic distribution in
phase space; the ion ensemble gyrating in the vx ÿ vy plane sketched at
three time-spots t1 < t2 < t3. c Inhomogeneous nongyrotropic distri-
bution; the upper part represents a spatial inhomogeneity by a
magnetic ®eld jump; the lower par shows the corresponding
nongyrotropy in phase space
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unperturbed magnetic ®eld is directed along the z-axis,
B0 � �0; 0;B0�; as before. The unpeturbed state consists
of a gyrotropic background electron-proton plasma
with arbitrary but stable distribution functions

Fb � Fb�vk; v?�; b � e; p; �14�
and a nongyrotropic abundance of ions with a distribu-
tion function of the form

F0�vk; v?;/� � Fg�vk; v?�U�/�: �15�
Indices e; p; and 0 stand for the electrons, protons, and
the nongyrotropic abundance, respectively. Index b is
used to mark the entire background. For the nongyro-
tropic component Case 1 of Section 2 is supposed; the
unperturbed distribution is homogeneous and station-
ary, and the nongyrotropy is maintained by a source and
a sink in the phase space.

U�/� is 2p periodic and may be expanded in to a
Fourier series

U�/� �
X1

m�ÿ1
U�m� exp�ÿim/�; �16�

with normalizationZ
U�/�d/ � 1: �17�

The Fourier coe�cients are determined via the following
integral

U�m� � 1

2p

Z
U�/� exp�im/�d/: �18�

Let us brie¯y discuss two extreme situations. In case of
gyrotropy the Fourier coe�cients become

U�0� � 1

2p
; U�m� � 0 for all m 6� 0; �19�

whereas in case of extreme nongyrotropy expressed by

U�/� � d�/� �20�
the Fourier coe�cients become

U�m� � 1

2p
for all m: �21�

Later we will see that for wave propagation parallel to B0

the dispersion relation is only in¯uenced by U�0�;U��1�;
and U��2�.

To handle the Maxwell-Vlasov system the /-inde-
pendent parts of the distribution functions are taken as
Maxwellian of the form

Fb�vk� � 1���
p
p

vbk
exp ÿ

v2k
v2bk

 !
; b � e; p;

Fg�vk� � 1���
p
p

v0k
exp ÿ

v2k
v20k

 !
;

�22�

vbk and v0k are parallel thermal velocities. The perpen-
dicular terms Fb�v?� and Fg�v?� contribute only through
their ®rst and second moments. The moments of order n
are de®ned by

hvn
b?i �

Z1
0

�v?�nFb�v?�v?dv?; b � e; p;

hvn
0?i �

Z1
0

�v?�nFg�v?�v?dv?; n � 1; 2:

�23�

Then the dispersion relation has the form

det

d�� d�k d�ÿ
dk� dkk dkÿ
dÿ� dÿk dÿÿ

0@ 1A � 0; �24�

with

d�� � 1ÿ k2c2

x2

ÿ
X

b

x2
b

x2
1ÿ hv

2
b?i

v2bk
ÿ Xb

kvbk
� hv2b?i

v2
bk

f�b

� �
Z�f�b �

" #

ÿ 2pU�0�
x2
0

x2
1ÿ hv

2
0?i

v20k
X0

kv0k
� hv20?i

v2
0k

f�0

� �
Z�f�0 �

" #
;

�24a�

d�k � 2pU�1�
x2
0

x
hv0?i
kv20k

1� f�0 Z�f�0 �
� �

; �24b�

d�ÿ � 2pU�2�
x2
0

x2

hv20?i
v20k

1� f�0 Z�f�0 �
� �

; �24c�

dk� � 4pU�ÿ1�
x2
0

x
hv0?i
kv20k

1� fk0Z�fk0�
h i

; �24d�

dkk � 1� 2
X

b

x2
b

x2
fk

2

b 1� fkbZ�fkb�
h i

� 4pU�0�
x2
0

x2
fk

2

0 1� fk0Z�fk0�
h i

;

�24e�

dkÿ � 4pU�1�
x2
0

x
hv0?i
kv20k

1� fk0Z�fk0�
h i

; �24f�

Fig. 2. Symmetric nongyrotropic distribution; because of symmetry,
the unperturbed perpendicular current j? vanishes
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dÿ� � 2pU�ÿ2�
x2
0

x2

hv20?i
v20k

1� fÿ0 Z�fÿ0 �
� �

; �24g�

dÿk � 2pU�ÿ1�
x2
0

x
hv0?i
kv20k

1� fÿ0 Z�fÿ0 �
� �

; �24h�

dÿÿ � 1ÿ k2c2

x2

ÿ
X

b

x2
b

x2
1ÿ hv

2
b?i

v2bk
ÿ ÿ Xb

kvbk
� hv2b?i

v2
bk

fÿb

� �
Z�fÿb �

" #

ÿ 2pU�0�
x2
0

x2
1ÿ hv

2
0?i

v2
0k
ÿ ÿ X0

kv0k
� hv20?i

v2
0k

fÿ0

� �
Z�fÿ0 �

" #
;

�24i�

where Z�f� is the plasma dispersion function de®ned by

Z�f� �
Z1
ÿ1

exp�ÿx2�
xÿ f

dx; �25�

and where we have de®ned the following terms

f�b �
xÿ Xb

kvbk
; fÿb �

x� Xb

kvbk
; fkb �

x
kvbk

; b � e; p;

f�0 �
xÿ X0

kv0k
; fÿ0 �

x� X0

kv0k
; fk0 �

x
kv0k

:

�26�
Details of the calculation are given in the Appendix.

Xp and Xe are the gyrofrequencies of the protons and
electrons, respectively. Note that Xe < 0. The gyrofre-
quency X0 of the nongyrotropic ion component is
positive for positive ions. In the examples presented in
this paper we always take X0 > 0; xb and x0 are the
plasma frequencies de®ned by

xb �
����������
e2nb

�0mb

s
; b � e; p; x0 �

�����������
q20n0
�0m0:

s
The particle densities full®l the condition

ne � np � q0n0

as the plasma is neutral. The terms Ab and A0 de®ned by

Ab � hv
2
b?i

v2bk
ÿ 1; b � e; p; A0 � hv

2
0?i

v20k
ÿ 1

are the anisotropies of the corresponding components.
We set Ab � 0 �b � e; p� throughout the paper to avoid
any anisotropy instability of the electron-proton back-
ground. For the nongyrotropic component, however,
hv0?i � v0k and hv20?i � v20?�A0 � 1� are supposed, as
hv0?i and hv20?i, respectively, come out of the radius of
an incomplete ring in phase space. Of course, the radius
of the ring is much bigger than its spreading, which is of
the same order as v0?. In our discussion we regard a-
particles as the nongyrotropic ion component for which
X0 � Xp=2; We normalize all frequencies to Xp and all
velocities to the AlfveÂ n velocity vA given by

vA � B0����������������������������������
l0�mpnp � m0n0�

p :

We later introduce the parallel components of the
plasma betas which have the form

bbk �
hv2bki
v2A

; b � e; p; b0k �
hv20ki
v2A

:

Now we discuss the dispersion relation Eq. (24). First
one sees that the o�-diagonal elements of Eq. (24) are
immediately connected with the nongyotropy. This is
valid for any form of nongyrotropy, and was found
already in the ®rst paper on this topic (Sudan, 1965).
For a gyrotropic plasma U��1� � U��2� � 0, and Eq. (24)
splits into the three independent equations

d�� � dkk � dÿÿ � 0: �27�
Then the nongyrotropy approaches a full ring and the
three equations of Eq. (27) describe the three funda-
mental L-, R-, and P -modes. As we are interested in the
consequences of nongyrotropic ion abundance only the
ion modes are discussed. No attention is payed to high-
frequency electron modes, as they are not really
changed.

The dispersion relation for the L-mode is d�� � 0. It
is the left-hand polarized mode which approaches the
AlfveÂ n mode when x! 0. The L-mode is unstable
because of the ring instability. As is to be seen from
Eq. (24a), the shape of F0�v?� is irrelevant and only the
value hv20?i matters; in general, this instability is an
anisotropy instability. The ring instability is a special
case. The dispersion and growth rate are shown in Fig.
3a. The number density n0 of the nongyrotropic com-
ponent is 2 percent of the background protons
�n0 � 0:02 np�. The other parameters are A0 � 400;
Ap � Ae � 0, and b0k � bpk � bek � 0:01. The unstable
branch is that which is referenced to the ring compo-
nent. The maximum growth rate excites frequencies just
below the gyrofrequency of the ring ions.

The R-mode is represented by the expression dÿÿ � 0.
It describes the right-hand polarized mode which
approaches the fast mode when x! 0 and the whistler
mode when Xe � x� Xp. The dispersion is shown in
Fig. 3b showing that the R-mode is completely stable.
The parameters are the same as for Fig. 3a. As the ring
ions are positively charged the R-mode has no reso-
nances in the ion frequency region.

P-mode: dkk � 0 describes the longitudinal mode. It
corresponds to the ion sound or slow mode, and only
occurs for extremely low frequencies.

Mode coupling: one major point of nongyrotropy is
that the o�-diagonal elements of Eq. (24) become ®nite.
Thus the three fundamental modes described are no
longer independent but are coupled.Tokeep this coupling
transparent we concentrate our discussion to the coupling
of the L- and R-modes only. This is achieved by a
symmetric nongyrotropy as shown in Fig. 2. For this
U��2� 6� 0, whereas U��1� � 0 and thus the P-mode is still
decoupled from the others. We assume a strong nongy-
rotropy by taking U��2� � U�ÿ2� � 1=�2p�. For the same
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parameters used in Fig. 3a and b we now obtain the
behavior as shown in Fig. 3c. The L- and R-modes are
recognized. The cross points caused by their superposi-
tion show some di�erent behavior. The upper cross point
at about x=Xp � 0:65; kvA=Xp � 0:5 splits. Both original
branches were stable and remain so as a result of the
coupling. Another cross point at about x=Xp � 0:36;
kvA=Xp � 0:33 does not split. We guess that this is a
singular touch point of two dispersion surfaces spanned
over the kk ÿ k? plane. Any deviation from the parallel
propagation direction should result in a splitting. Anal-
ogous situations in multicomponent plasmas are already
known (AndreÂ , 1984). The in¯uence of the coupling to the
instability is ofminor importance. The unstable branch of
the L-mode is only weakly changed.

The in¯uence of higher plasma beta and higher
abundance of the nongyrotropic species is shown in the
next two ®gures. Fig. 3d depicts the unstable branch
when the betas are increased by one and two orders of
magnitude being then b0k � bpk � bek � 0:1 and 1:0,
respectively. The other parameters are the same as in
Fig. 3c. Especially for b0k � bpk � bek � 1:0 the growth

rate goes down drastically and nearly no real wave
growth is to be expected. An increase in the growth rate,
however, is provided at higher abundance of particles of
the nongyrotropic component as shown in Fig. 3e. a-
particle densities are n0 � 0:05np and n0 � 0:1np, where-
as the other parameters are the same as in Fig. 3c. The
maximum growth rate goes up from cmax � 0:17Xÿ1p at
n0 � 0:02np. to cmax � 0:35Xÿ1p at n0 � 0:1np. The dis-
persion relation Eq. (24) based on the stationary and
homogeneous zero-order nongyrotopic distribution
function Eq. (7) is di�erent from the dispersion relation
based on the gyrating zero-order distribution function
Eq. (9). The implications with respect to weakly
outgassing comets are discussed by Cao et al. (1995).

4 Hybrid simulation of phase-space di�usion
and saturation of the instability

Within the framework of linear dispersion theory only
the initial stages of wave growth may be described. To go
further and to include di�usion and saturation we sim-

Fig. 3. a Dispersion (upper panel) and growth rate (lower panel) of the
L-mode in gyrotropic plasma; the fat line is the unstable branch.
b Dispersion of the R-mode in gyrotropic plasma; this mode is
completely stable. c Dispersion (upper panel) and growth rate (lower
panel) of coupled L-R modes in nongyrotropic plasma; the fat line is
the unstable branch. dDispersion (upper panel) and growth rate (lower
panel) of coupled L-R modes in a nongyrotropic plasma at higher

betas; the solid lines represent b0k � 0:1; the dashed lines represent
b0k � 1:0; the fat lines mark the unstable regions; only branches with
instability are drawn. e Dispersion (upper panel) and growth rate
(lower panel) of coupled L-R modes at higher abundance of the
nongyrotropic species; the solid lines represent n0 � 0:05np; the
dashed lines represent n0 � 0:1np; the fat lines mark the unstable
regions; completely stable branches are suppressed
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ulate the wave excitation with a hybrid code (Scholer
et al., 1993). The simulation method is 21=2-dimensional,
which allows for the possibility to include wave
propagation directions arbitrarily orientated relative to
the background magnetic ®eld. However, we will ®nd
that waves are excited only parallel to the background
magnetic ®eld, strongly con®rming our assumption
Sect. 3. In the code all ions (nongyrotropic a-particles
and gyrotropic background protons) are treated as
individual particles, thereby corresponding to a com-
plete kinetic description for the ion behavior. The
electrons are a massless ¯uid background. At t � 0 the
simulation is started with a nongyrotropic distribution
of a-particles as shown in Fig. 4. We choose a symmetric
distribution to suppress any zero-order currents. The a-
particles are embedded in a gyrotropic proton-electron
background. The situation corresponds to Case 2 of
Sect. 2. For the particle simulation we prefer this case as
it is much easier to handle than the open phase space
discussed in Case 1.

At the beginning of the simulation run a broad
spectral range of waves is excited. This switch-on phase
is shown in Fig. 5a. The R-mode with its mainly linear
xÿ k dependence is seen, as well as the L-mode with its
resonance below x=Xp � 0:5. At this stage the wave
excitation is dominant by virtue of the switch-on
perturbation. Later on in the simulation the wave
excitation develops into that shown in Fig. 5b. The
instability is now the dominant mechanism. Only the
unstable L-mode survives for wave numbers near the
maximum growth rate.

The good agreement is somewhat surprising as the
dispersion branches are provided from the open phase
space model (Case 1), whereas the simulation runs in a
closed phase space (Case 2). Apparently at the early
stage (see Fig. 5a) of the simulation where di�usion and
saturation are not yet developed, it is of minor impor-
tance by which process nongyrotropy is maintained. At
a later stage (see Fig. 5b) the agreement is less essential, as a maximum growth rate just below the ion gyrofre-

quency is predicted by dispersion theory in an open as
well as in a closed phase space.

Now we will study the phase-space di�usion of the
nongyrotropic species. In Fig. 6 the phase space with the
possible di�usion processes is sketched. Three processes
are distinguished. The di�usion of the mean perpendic-
ular velocity hv?i, the arc spreading r�v?� ������������������������������
h�v? ÿ hv?i�2i

q
and the increasing of the arc length

D � hv?i/. We made several runs with di�erent param-
eters. As a typical result we will set o� a reference run
where the density of the nongyrotropic particles is 2
percent of the proton background �n0 � 0:02np�, the
mean ring velocity hv0?i � 2vA, the initial beta
b0k � 0:01 giving an initial nongyrotropic anisotropy
of A0 � 400. Initial arc length is / � 2� p=4 and arc
spreading is r � 0:01vA. The electron-proton back-
ground is gyrotropic with a thermal initialization of
bpk � bek � b0k. The simulation results are depicted in
Fig.7.

The sequence of phase-space plots in Fig.7a provides
us with a qualitative impression of the di�usion of theFig. 4. Sketch of the nongyrotropic initial distribution

Fig. 5. a xÿ kz diagram at an early simulation time; the solid lines
correspond to dispersion from linear dispersion theory; b xÿ kz
diagram at an advanced simulation time; only the unstable mode with
maximum growth rate survives
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nongyrotropic distribution. At early times
�t � 12:57Xÿ1p , top) the phase space is still in its initial
con®guration despite of the gyration of the entire
distribution. At later times �t � 125:66Xÿ1p , center) the
arcs are broadened and lengthened and the mean
velocity is decreased. Finally �t � 251:33Xÿ1p , bottom)
the arcs are nearly grown together.

Di�usion and saturation are shown in more detail in
Fig. 7b. Whereas the mean ring velocity hv?i and the
anisotropy A0 decrease as expected, the thermal veloc-
ities go up, depicted by the increase in r and b0k. The
growth phase extends up to about t � 1300Xÿ1p and is
well distinguished from the saturation phase at
t � 130Xÿ1p . Saturation in the present context does not
mean that ®nal stationary conditions are reached but
temporary evolution runs very slowly compared with the
early growth phase. The magnetic ¯uctuations jdB=B0j2
show a rather low saturation level. This may be
understood as b0k increasing strongly during the growth
phase. However, from linear dispersion theory we have
learnt that the growth rate c decreases drastically when
b0k approaches 1, and thus the ¯uctuation level of

jdB=B0j2 is kept nearly constant. Thus, the reservoir of
free particle energy is exploited only minimally. Obvi-
ously the contribution of the waves to the total energy
balance is of orders of magnitude below the kinetic
particle energy. The contour plot of the spectral density
provides us with a mean frequency and a mean wave
number at x=Xp � 0:25 and kvA=Xp � 0:3. These results
are in reasonable agreement with linear dispersion
theory as discussed in Sect. 3.

We emphasize that the characteristic time-scales for
the three di�usion processes are all in the same order.

The coincidence of these time-scales does not hint at a
special arc lengthening process. Arcs are lengthened
synchronously to their spreading. We call this process
local thermalization, as a group of particles di�uses
from its position in phase space. Spreading and length-
ening of an arc is of the same absolute value. The
spreading appears more obvious but this is only a
relative e�ect. In our reference run we found the
di�usion time-scale of td � 130Xÿ1p ; this corresponds to
about ten gyrations of an a-particle.

The in¯uence of the nongyrotropic abundance to this
time-scale is shown in Fig. 8. The decrease in the
nongyrotropic anisotropy and the increase in the wave
¯uctuations are depicted for n0 � 0:01np additionally to
our reference run with n0 � 0:02np. Lower abundance
increases the di�usion time-scale more than adequately.

5 Summary

For nongyrotropic particle distribution functions in
magnetoplasmas the axial symmetry in phase space is
broken. Such distributions are gyrophase dependent.
Nongyrotropy may occur in the ion as well as in the
electron components. In this paper we have mainly
studied nongyrotropy in an ion component. An impor-
tant property is that these distributions may not be
simultaneously homogeneous, stationary, and source/
sink-free in phase space. They are found in magneto-
plasmas when inhomogeneity scale lengths are smaller
than the ion gyroradius, when nonstationary scale
lengths are shorter than the gyroperiod, or when there
are sources and sinks in phase space of the correspond-
ing plasma species. So far nongyrotropy has been
observed particularly in extraterrestrial plasmas. It
occurs at burst-like re¯ections of electrons or ions at
collisionless shocks, in heavy ion components of multi-
ion shocks in the downstream region, and at solar wind-
comet interactions, especially in the case of small
comets.

In this paper the characteristics of nongyrotropic ion
distributions were studied based on linear Maxwell-
Vlasov dispersion theory as well as with a 21=2-dimen-
sional hybrid code simulation. The two spatial dimen-
sions of the model include propagation directions with
arbitrary angle to the background magnetic ®eld.
However, it is found that waves propagate only in a
parallel direction. Thus the dispersion analysis is
restricted to this situation. The consequence is that
nongyrotropic distributions have similar dispersion and
instability properties as the corresponding gyrotropic
ones. Already known for gyrotropic ion distributions
the fundamental L-, R-, and P-modes are also found in
nongyrotropic case. The unstable L-mode maintains its
instability characteristics. We conclude that gyrophase
bunching does not in¯uence the growth rate essentially if
the corresponding gyrotropic distribution is already
unstable. In a stable gyrotropic medium, however,
Brinca et al. (1993) discussed that gyrophase organiza-
tion is of essential importance by destabilization of a
formerly stable plasma. Completely new for nongyrot-

Fig. 6. Sketch of the di�usion processes in phase space
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ropy is the coupling of L-, R-, and P-modes with each
other. In this paper a detailed study of L-R coupling is
performed. In principle the coupling takes place at any
arbitary strength of nongyrotropy and particle density.
A remarkable in¯uence, however, is seen for strong
nongyrotropy and particle densities at least in the
percent region of the background plasma.

The phase-space di�usion of nongyrotropic ions
studied by the hybrid code simulation may be imagined
to separate in three processes; arc lengthening, arc

broadening, and di�usion of the distribution radius. The
characteristic di�usion times are all in the same order. In
our simulation study performed with a strong initial
anisotropy, saturation is reached after a time-scale
corresponding to about ten gyrations of the nongyro-
tropic particles. The wave ¯uctuations saturate at a
rather low level, though most of the free particle energy
stored in the nongyrotropic ring is still available.
However, during the growth phase the plasma beta is
strongly increased, decreasing coincidentally the growth

Fig. 7. a Nongyrotropic phase space density for three di�erent
simulation times. b Evolution of phase-space parameters provided by
the simulation of a nongyrotropic plasma; the panels represent the
mean ring velocity, the arc spreading, the anisotropy, the parallel beta,

and the magnetic ¯uctuations; the panel bottom right represents a
contour plot of the magnetic spectral density in the saturation phase
�tXp � �125 . . . 325��
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rate of the instability. Thus the wave ¯uctuation level
remains nearly constant on a low level.
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Appendix

The Vlasov equation for the linear disturbance F1 of the
nongyrotropic distribution function is

�@t ÿ X0@/ � vk@z�F1 � ÿ q0
m0
�E� v� B�@vF0: �A1�

The gyrophase dependence is expanded in a Fourier
series yielding

F1�z; t; vk; v?;/� �
X1
n�1

F �n�1 �z; t; vk; v?� exp�ÿi n /�:

�A2�
After Fourier transformation of Eq. (A1) with respect to
z and t one obtains

X1
n�ÿ1

ÿi�xÿ nX0 ÿ kvk�
� �

F �n�1 exp�ÿi n /�

� ÿ q0
m0

X1
m�ÿ1

�
1ÿ kvk

x

� �
@v?Fg ÿ m

v?
Fg

� �
� kv?

x
@vkFg

� �
U�m� exp ÿi�m� 1�/� �E��x; k�
� @vkFgU

�m� exp�ÿi m /�Ek�x; k�

� 1ÿ kvk
x

� �
@v?Fg � m

v?
Fg

� ��
� kv?

x
@v?Fg

�
U�m� exp�ÿi�mÿ 1�/�Eÿ�x; k�

�
:

�A3�
From this we ®nd

F �n�1 � ÿi
q0
m0

1

xÿ nX0 ÿ kvk

1ÿ kvk
x

� �
@v?Fg ÿ nÿ 1

v?
Fg

� �
� kv?

x
@vkFg

� ��
U�nÿ1�E��x; k�

� @vkFg

h i
U�n�Ek�x; k�

� 1ÿ kvk
x

� �
@v?Fg � n� 1

v?
Fg

� �
� kv?

x
@vkFg

� �
U�n�1�Eÿ�x; k�

�
;

�A4�
where we have introduced the circular polarized ®eld
amplitudes

E� � 1

2
�Ex � iEy�; Ek � Ez �A5�

Analogously we have set

v� � 1

2
�vx � ivy� � v?

2
exp��i/�: �A6�

The perturbation current, de®ned by

j�x; k� � q0

Z
vF1�x; k; vk; v?;/�d3v; �A7�

may then also be expressed in terms of the circular
polarized amplitudes j�; jk and jÿ yielding

j� � q02p
Z

v?
2

F �1�1 v?dv?dvk;

jk � q02p
Z

vkF
�0�
1 v?dv?dvk; (A8)

jÿ � q02p
Z

v?
2

F �ÿ1�1 v?dv?dvk:

Putting Eq. (A4) in Eq. (A8) and using

j � rE �A9�
the conductivity tensor r follows in the form

Fig. 8. Evolution of anisotropy and magnetic ¯uctuation level for two
nongyrotropic particle densities; the solid lines represent n0 � 0:02np;
the dotted lines represent n0 � 0:01np.
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r�� � ÿ i
q02

m0
2pU�0�

Z
v?=2

xÿ kvk ÿ X0

� 1ÿ kvk
x

� �
@v? �

kv?
x
@vk

� �
Fgv?dv?dvk;

r�k � ÿ i
q20
m0

2pU�1�
Z

v?=2
xÿ kvk ÿ X0

@vkFgv?dv? ; dvk;

r�ÿ � ÿ i
q02

m0
2pU�2�

Z
v?=2

xÿ kvk ÿ X0

� 1ÿ kvk
x

� �
@v? �

2

v?

� �
� kv?

x
@vk

� �
� Fgv?dv?dvk ;

rk� � ÿ i
q20
m0

2pU�ÿ1�
Z

vk
xÿ kvk

� 1ÿ kvk
x

� �
@v? �

1

vg

� �
� kv?

x
@vk

� �
� Fgv?dv?dvk ;

rkk � ÿi
q20
m0

2pU�0�
Z

vk
xÿ kvk

@vkFgv?dv?dvk; �A10�

rkÿ � ÿ i
q02

m0
2pU�1�

Z
vk

xÿ kvk

� 1ÿ kvk
x

� �
@v? �

1

v?

� �
� kv?

x
@vk

� �
� Fgv?dv?dvk;
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q20
m0

2pU�ÿ2�
Z
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xÿ kvk � X0

� 1ÿ kvk
x

� �
@v? �

2

v?

� �
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x
@vk

� �
� Fgv?dv?dvk;

rÿk � ÿi
q20
m0

2pU�ÿ1�
Z

v?=2
xÿ kvk � X0

@vkFgv?dv?dvk;

rÿÿ � ÿ i
q20
m0

2pU�0�
Z

v?=2
xÿ kvk � X0

� 1ÿ kvk
x

� �
@v? �

kv?
x
@vk

� �
� Fgv?dv?dvk :

Setting Eqs. (22) and (23) into Eq. (A10) and appending
corresponding terms for the gyrotropic electron-proton
background, the perturbation current of the full plasma
composition is completely determined. Via Maxwell's
equations, the dispersion tensor Eq. (24) follows in a
straightforward fashion.
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