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Abstract. The pattern recognition capabilities of arti®-
cial neural networks (ANNs) have for the ®rst time been
used to identify Pi2 pulsations in magnetometer data,
which in turn serve as indicators of substorm onsets and
intensi®cations. The pulsation spectrum was used as
input to the ANN and the network was trained to give
an output of +1 for Pi2 signatures and )1 for non-Pi2
signatures. In order to evaluate the degree of success of
the neural-network procedure for identifying Pi2 pulsa-
tions, the ANN was used to scan a number of data sets
and the results compared with visual identi®cation of
Pi2 signatures. The ANN performed extremely well with
a success rate of approximately 90% for Pi2 identi®ca-
tion and a timing accuracy generally within 1 min
compared to visual identi®cation. A number of potential
applications of the neural-network Pi2 scanning proce-
dure are discussed.

1 Introduction

Over the past number of years arti®cial intelligence (AI)
methods have been increasingly recognised as powerful
analysis tools in solar-terrestrial physics. They have
enabled or facilitated the identi®cation of relationships
and patterns in a variety of data sets (McPherron, 1993;
Joselyn et al., 1993). Arti®cial neural networks (ANNs)
are a branch of AI methods which are proving
particularly successful in solar-terrestrial time-series
prediction (Koons and Gorney, 1991; Lundstedt, 1992;
Gorney et al., 1993; Lundstedt and Wintoft, 1994; Wu
and Lundstedt, 1996). In this paper the pattern recog-
nition capabilities of ANNs have for the ®rst time been
used to identify Pi2 pulsations, and consequently
substorm onsets, in magnetometer data.

Pi2 pulsations are impulsive damped ULF, i.e.
frequency band 6±25 mHz, oscillations of the geomag-
netic ®eld which occur at the time of magnetospheric

substorm onsets and intensi®cations. Two decades ago,
Saito et al. (1976) pointed out that Pi2 pulsations
recorded at low latitudes, where amplitudes typically lie
in the range 0.25±2.5 nT, are one of the clearest
indicators of substorm onsets. They also pointed out
the shortcomings of some of the other methods of
identifying substorms. For example, auroral electrojet
(AE) indices su�er due to the inadequate spatial
coverage of observing stations. DMSP satellite obser-
vations su�er from inadequate temporal coverage due to
the satellite orbital period around the earth. The mid-
latitude positive bay signature of substorms has a
gradual onset, i.e. does not provide accurate timing,
and is not observed in association with weak substorms.
In their de®nition of a magnetospheric substorm,
Rostoker et al. (1980) required that at least one Pi2
pulsation burst occur and stated that, if well de®ned, it
accurately (�1 min) identi®es the substorm onset.
Furthermore, Pi2s occur with each substorm intensi®-
cation. More recently Yeoman et al. (1994) made a
comparison of mid-latitude Pi2 pulsations and geosta-
tionary orbit particle injections and con®rmed that Pi2s
serve as e�ective indicators of the onset of the substorm
expansive phase. As a result of the utility of Pi2s for the
identi®cation of substorm onsets, many researchers
visually scan low-latitude magnetometer data for the
occurrence of Pi2 pulsations in the course of their
substorm research. The ®rst preliminary attempts to
automate this scanning process using digital data were
only recently made. NoseÂ et al. (1995) used wavelet
analysis for the detection of Pi2 pulsations for moni-
toring substorm onsets. Sutcli�e (1995) attempted three
methods for the automated detection of Pi2 pulsations;
these were data adaptive ®ltering, maximum entropy
prediction error ®ltering, and neural networks. These
initial attempts indicated that neural networks had the
greatest potential for success.

This paper builds on those initial successes. In
particular, it has been found that speci®c pre-processing
of the data makes the results more robust and signif-
icantly improves the detection success rate. We are not
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aware of any other automated means of detecting
substorm onsets with a comparable degree of success.

2 Neural-network training and veri®cation

The ANN which we used for Pi2 pattern recognition
was of the type known as a multilayer perceptron
(Haykin, 1994). Our feed-forward fully connected ANN
with one hidden layer was trained using the back-
propagation algorithm, which remains the most widely
used supervised training method. During this iterative
process the ANN was trained to map a set of input
values to a single target value. The network architecture
and this process are illustrated schematically in Fig. 1.
The central goal in ANN training is not to memorize the
training data, but rather to model the underlying
generator of the data (Bishop, 1996). An important
factor in achieving this goal is that the amount of
training be su�cient, but that the network not be over-
trained. A recommended method to ensure that an
ANN is not over-trained is to stop training when the
error measured using an independent validation set
starts to increase. Consequently, an independent set of
input values was used to determine when the ANN was
su�ciently trained; training was ceased when the rms

error between the computed and target output values
reached a stable minimum. We found limited pre-
processing of the data (Bishop, 1996) to be important
and to have a signi®cant e�ect on the quality of the
results.

The input data for the ANN were obtained by
selecting ULF pulsation events from the induction
magnetometer data digitally recorded at the Hermanus
Magnetic Observatory (HMO) with 1-s sampling. Event
lengths ranging from 5 to 10 min were tried; however,
experimentation indicated that a 6-min event length
appeared to give the best overall results. The selected
events were classi®ed into two groups, namely Pi2
signatures and non-Pi2 signatures. The event start times
of Pi2 signatures were selected to be approximately
0.5 min prior to the onset of the Pi2 pulsations. Some of
the selected Pi2 pulsations decayed within the 6-min
event window, while others extended beyond it. Non-Pi2
events were intervals of either Pc3 pulsation activity,
which typically have higher frequencies and smaller
amplitudes than Pi2s, or insigni®cant pulsation activity.
Examples of these various types of events are shown in
Fig. 2.

Initially we used these event time-series as the input
values for training the ANN. The number of nodes in
the input layer in this case was thus 360. Increasing the
sampling interval by up to eight times, in order to reduce
the number of input nodes, had little e�ect on the
results. After much experimentation we found that more
robust results were obtained by ®rst computing the
Fourier spectrum for each event. The ®rst 45 points of
the amplitude spectrum (i.e. low-frequency end) were
then used as the input values to the ANN with 45 input
nodes. The amplitude spectra of the time-series in Fig. 2
are shown in Fig. 3. The ANN was trained to give target
output values of +1 for Pi2 events and )1 for non-Pi2
events. The set of input values contained equal numbers
of Pi2 and non-Pi2 events.

An important condition for good generalisation of an
ANN is that the training examples form a su�ciently
large and representative sample of the population of all
cases. In initial tests we found relatively small di�erences
in the results for ANNs trained using 50 and 100
examples, indicating these to be su�ciently large sam-
ples. In forming the samples of training examples we
tried to ensure that Pi2s with a variety of shapes,
frequencies and amplitudes were selected. For purposes
of demonstration, we trained ANNs for each of three
independent sets of input values; the ®rst set consisted of
only four events (ANN-S4), which is obviously not a
representative sample, set two of ten events (ANN-S10),
and set three of 100 events (ANN-S100), which we
believe to be a representative sample.

3 Neural-network scanning

Each of the three trained ANNs were utilised to scan
digital induction magnetometer data for the occurrence
of Pi2 pulsations. In order to do this, data windows
commencing 1 min apart and equal in length to that of

Fig. 1. Schematic representation of the data pre-processing and
neural-network architecture used to identify Pi2 pulsations
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the events used for training, that is 6 min, were
sequentially taken from the interval of data to be
scanned. The data for each window were pre-processed
in a manner similar to that of the training data, that is,
computation of Fourier amplitude spectrum, and then
presented to the ANN. For each data window thus
presented to the ANN a single output value in the range
)1 to +1 was obtained. The expected result of this
process is that if the data window contains no evidence
of a Pi2 pulsation, the output value will lie close to )1.
However, if the data window contains evidence of a Pi2
pulsation, the expected output is a value close to +1. In
the lower part of Fig. 4 the induction magnetometer
data for an interval spanning a number of Pi2 pulsations
are plotted. Also plotted are the output values of the
ANN for each data window; each output value is
plotted at the time equal to the start time of the
corresponding data window. The output values in the
centre part of Fig. 4 are those where the input values to
the ANN were the actual time-series data, while the
output values in the upper part are those where the
amplitude spectrum was used as input. The results in
Fig. 4, and many others like it, showed that converting
the input data to a Fourier spectrum prior to presen-
tation to the ANN gave more decisive and consistent
results than those using the time-series directly.

In Fig. 5a the H-component data for a 24-h interval,
i.e. 29 January 1988, are plotted. Also plotted are the
output values for the ANNs trained using the three
independent sets of training data. The output values in
Fig. 5b are those for the ANN trained using the set of
four events, those in Fig. 5c using the set of ten events,
and those in Fig. 5d using the set of 100 events. In all
cases conversion to Fourier spectrum was made at the
pre-processing stage. The two large, clear Pi2 signatures
with onsets at 2054 and 2133 UT were identi®ed by all

Fig. 2. Examples of the types of events used to train the ANN; Pi2
signature (upper) and non-Pi2 signatures, i.e. Pc3 pulsation (centre)
and insigni®cant activity (lower)

Fig. 3. Amplitude spectra of the time-series in Fig. 2; Pi2 signature
(solid line), Pc3 pulsation (short dashed line), and insigni®cant activity
(long dashed line)

Fig. 4. Examples of the output from the ANN when a section of data
containing Pi2 signatures (lower) is scanned. The outputs at centre and
upper are those obtained when the time-series itself and the amplitude
spectrum of the time-series, respectively, are used
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Fig. 5. a Example of a 24-h interval of induction magnetometer data. The sequences of output values for the ANNs trained usingb 4 events, c 10
events, and d 100 events are also shown for comparison
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three ANNs; these were the only Pi2s identi®ed by
ANN-S4. Since ANN-S4 was trained using an extremely
limited set of patterns, we might expect that it would
only be able to recognise clearly de®ned and isolated
Pi2s. These two Pi2s occurred within an hour of the time
at which Pi2s occur with maximum frequency at
Hermanus (Sutcli�e, 1975), that is, the time when Pi2s
are also most clearly and easily observed. ANN-S10 and
ANN-S100 also clearly identi®ed Pi2s with onsets at
0958 and 1550 UT; these are dayside Pi2 pulsations.
Generally, Pi2s are regarded as nightside phenomena;
however, Sutcli�e and Yumoto (1989, 1991) demon-
strated that at low latitudes they are regularly observed
during the daytime, although often hidden by other
pulsation types. Inspection of the AE indices revealed
that, on the basis of AE magnitude, these were the
onsets of the two largest substorms observed on 29
January 1988. ANN-S100 identi®ed a number of other
Pi2s, but with less certainty, that is, with a lesser number
of positive values and with these values less than +1.
Inspection of the Hermanus pulsation data revealed
what appeared to be small Pi2s at 1445 and 1512 UT.
We also inspected the magnetometer data from Kakio-
ka, which was in the nightside hemisphere at these times,
and found clear Pi2 signatures. Inspection of the
Hermanus and Kakioka pulsation data at 0550 and
1620 UT revealed slight enhancements in pulsation
activity, but it was not possible to say with certainty
whether or not these were Pi2s. On the basis of these and
other similar examples, we implemented a cut-o�
criterion in the computer program which scans for
Pi2s. If a sequence of four or more positive spikes
exceeding 0.4 in value occur then the occurrence of a Pi2
is signalled. In all subsequent scans for Pi2s we used this
criterion with the ANN-S100 network. Thus on 29
January 1988 the occurrence of Pi2s are reported at
0958, 1446, 1512, 1550, 2054 and 2133 UT when the
Hermanus data are used.

4 Results

In order to evaluate the degree of success of the neural-
network procedure for identifying Pi2 pulsations the
ANN-S100 was used to scan three data sets. The ®rst
two of these sets each consisted of intervals of ten
consecutive days of magnetometer data selected so as to
exclude the occurrence of any major magnetic storm
activity. Storm periods were excluded in order to
guarantee intervals of isolated substorms rather than
the complex superposition of substorm activity which
occurs during large storms. The ®rst data set consisted
of the Hermanus induction magnetometer data for the
period 1988 day numbers 24 to 33. This interval fell
within the 6-month period from which the events used
for training the ANN were selected. The second data set
consisted of Hermanus induction magnetometer data
for the period 1987 day numbers 185 to 194, which fell
outside the period from which the training events were
selected. The third data set consisted of isolated days of

magnetometer data when conditions were such that the
ANN might be expected to fail.

Each data set was ®rst inspected visually and the
onset times of all Pi2 pulsation events noted to the
nearest minute. Since Pi2 pulsations at low latitudes are
generally more clearly de®ned in the H component than
in D, the H component was primarily used for this
purpose. However, in those cases where the D compo-
nent was more clearly de®ned, the D-component onset
times were used. The H- and D-component data for
each set were then scanned separately using the ANN-
S100. The number of events identi®ed by these various
means for the ®rst two data sets are compared in
Table 1, where the non-parenthesised values are those
which satisfy the cut-o� criterion mentioned previously.
The results in the table show that the ANN performed
well in the identi®cation of Pi2 events, with a combined
success rate for the two data sets of 90% if both H and
D are scanned. If only the H component is scanned, then
the combined success rate is reduced to 81%.

We now brie¯y consider the reasons for some of the
apparent failures. In the ®rst data set a total of 75 Pi2
events were identi®ed. Four of the events identi®ed by
the ANN were not identi®ed visually, thus it was
necessary to investigate whether or not the ANN was
selecting some non-Pi2 events. Each of these reported
events occurred during mid-afternoon at Hermanus,
which closely corresponds to local midnight at Kakioka
in Japan. Consequently, the Kakioka magnetometer
data were inspected and in each case a Pi2 pulsation was
clearly visible at the times corresponding to the ANN
events at Hermanus. Inspection of the AE indices at the
reported times revealed signi®cant electrojet intensi®ca-
tions con®rming that they were associated with sub-
storm onsets or enhancements. Thus it is concluded that
the ANN was able to identify Pi2s which were missed by
visual scanning. The reason for these Pi2s not being
visible to the eye is that they were masked by superposed
continuous pulsation activity. Sutcli�e and Yumoto
(1989) found this to be the reason why many daytime
Pi2s are not easily visible. An example is shown in Fig. 6
where the lower trace clearly shows a train of three
successive Pi2s at Kakioka. The centre trace shows the
corresponding data for Hermanus, where the Pi2s are
masked by superposed Pc3 pulsation activity, which is
typical of the dayside hemisphere. The upper trace
shows the output of ANN-S100 scanning in which two
of the Pi2s at 1453 and 1502 UT are clearly identi®ed. In
the second data set eight of the Pi2 events identi®ed by

Table 1. Comparisons of the total numbers of Pi2 events with the
numbers identi®ed visually and by the ANN for each of the data
sets

Data set Number of events

Total Visual H
and/or D

ANN H
and/or D

ANN
H only

1 75 71 71 (72) 60
2 83 75 71 (80) 68
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the ANN were not identi®ed visually; all occurred
during local daytime. Five of these events were con-
®rmed to be Pi2s by inspection of Kakioka data.
However, three appeared to be non-Pi2 events; the
reason for their selection by the ANN was due to
enhancements in the amplitude of pre-existing Pc4
pulsation activity being interpreted as Pi2 signatures.

Table 1 indicates that a number of Pi2 signatures
were identi®ed by visual observation but not by the
ANN; there were four such cases in the ®rst data set.
Inspection of the data revealed that in all cases the
pulsations were of small amplitude. Two examples are
illustrated in Fig. 7. In the lower example the Pi2 at 1104
UT was not detected at all by the ANN. In the upper
example the Pi2 at 1801 UT was detected by the ANN,
but not reported because it did not pass the selection
criteria discussed previously. Inspection of the AE
indices at the times of these Pi2s revealed that they
were associated with extremely weak substorms, prob-
ably with a signi®cantly contracted auroral oval. In the
second data set there were twelve events which were
identi®ed visually but not by the ANN. Plots of the
ANN output revealed that nine of these were in fact
detected by the ANN, but rejected due to the selection
criteria. If all events detected by the ANN are taken into
account, as indicated by the numbers in parentheses in
Table 1, then the combined success rate of the ANN is
increased to 96%. An advantage of the ANN method of
Pi2 identi®cation is that if desired, the network can be
trained to be more sensitive by including more small-
amplitude examples in the training data set.

The ANN utilises the amplitude spectrum of pulsa-
tion events as input. Therefore, we might expect the

presence of non-Pi2 oscillations with frequencies lying in
the Pi2 band to result in apparently positive identi®ca-
tion of non-Pi2 events. In order to test this inference, the
third data set was constituted of isolated days on which
pulsation activity in the Pi2 frequency band occurred.
Two types of activity were investigated, namely Pc4
pulsations and broad-band activity during geomagnetic
storms. On two days, namely 1989 days 3 and 4, there
was almost continuous Pc4 pulsation activity during
local daytime at Hermanus. Scanning these two days
with the ANN-S100 identi®ed 41 events as Pi2s. Visual
inspection of the pulsation data revealed a few of these
events to be enhancements in amplitude of pre-existing
Pc4 pulsations. Some of these enhancements were
correlated with simultaneous Pi2 signatures at Kakioka
in the nightside hemisphere; these were regarded to be
Pi2s. However, eleven of these amplitude enhancements
were not correlated with clear Pi2 signatures; these can
be regarded as falsely reported Pi2s. All of these false
reports were for events which occurred between 09 and
16 LT. We thus conclude that the ANN will occasion-
ally falsely identify enhancements in the amplitude of
Pc4s, which are typically daytime pulsations, as being
Pi2 pulsations. If the ANN is used only for scanning
data from the night-time hemisphere, this problem will
be avoided. During large geomagnetic storms induction
magnetometers record broad-band oscillations for much
of the storm's duration. The ANN-S100 was used to
scan two days of data where the K indices were all 5 or
greater. For many hours the output of the neural

Fig. 6. Example where the ANN was able to identify Pi2 signatures
which were not visually discernible due to the presence of Pc3
pulsations. The upper diagram shows the sequence of ANN output
values obtained for the input data in the centre diagram. The Kakioka
magnetometer data (lower) con®rms the occurrence of Pi2 signatures Fig. 7. Examples where the ANN failed to identify Pi2 signatures

which were visually discernible. In the lower example there is no
evidence of the Pi2 in the ANN output. In the upper example there is
evidence of the Pi2 in the ANN output, but it failed the selection
criteria for reporting
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network was a sequence of +1s. We thus conclude that
during large geomagnetic storms, the ANN fails as a
means of identifying Pi2s. However, we point out that at
such times it is also not possible visually to identify Pi2
signatures.

We next consider the timing accuracy of the ANN
Pi2 identi®cation method. In order to do this the
di�erence between the onset times of Pi2s determined
by visual inspection and by the ANN were noted. The
time di�erences for the ®rst two data sets are presented
in Fig. 8 in the form of a histogram. It is seen that in the
majority of cases the onset times determined by visual
inspection and ANN scanning corresponded. In those
cases where there was a di�erence, the majority di�ered
only by 1 min. In a number of cases the ANN scanned
onset times were four or more minutes later than those
determined by visual inspection. Investigation of the
cause revealed that timing errors may occur in cases
where the Pi2 amplitude is very small, where the
amplitude increases gradually rather than being impul-
sive, or when Pi2s overlap. It is in these cases that an
experienced observer also has di�culty in determining
an accurate onset time.

5 Applications

The neural-network-based process which has been
developed to identify Pi2 pulsations in magnetometer
data has been shown to work extremely well. It could
thus serve as a useful and powerful tool in substorm
research. We now brie¯y discuss some of the potential
applications:

1. This process can be implemented in real time to
identify Pi2 pulsations, and consequently substorm
onsets and enhancements, as they occur. Many years
ago Saito et al. (1976) proposed that by continuously

monitoring Pi2 pulsations from three low-latitude
ground stations evenly spaced in longitude, the onset
of most substorms could be identi®ed. Although this
suggestion had signi®cant merit, the technology at the
time was not adequate to implement easily the idea in
practice. Since that time, however, signi®cant develop-
ments have taken place. Geomagnetic data are contin-
uously recorded in digital form at many observatories.
The means exist to distribute data in near real time.
More sophisticated data processing techniques have
been developed. Consequently, we suggest that the idea
of continuously monitoring the occurrence of substorms
by utilising observations of low-latitude Pi2 pulsations
could be implemented relatively easily.

2. The HMO regularly receives requests from re-
searchers world-wide to scan its induction magnetom-
eter data for Pi2s. Generally, the purpose of such
requests is either to determine or con®rm the occurrence
of substorms during a speci®ed interval of time, or to
determine or con®rm the onset time of a speci®c
substorm. In the past this has been done by plotting
and visually inspecting the data, which, when there are a
large number of events, can be time consuming. The new
process will enable this task to be done rapidly and
objectively. It will be particularly useful where the
identi®cation of a large number of events from archived
data, for example for statistical studies, is required.

3. The ANN process might be used to search for
substorms with, or classify substorms according to,
certain characteristics which are related to speci®c Pi2
parameters. The ANN-S100 utilised in this paper was
trained to identify Pi2s with a broad range of frequen-
cies, amplitudes, durations and shapes. However, an
ANN might be trained where one or more of these
parameters allow for only a narrow range of values; for
example, ANN-S4 selected only large-amplitude Pi2s.
An ANN might also be trained to classify Pi2s into one
or more groups, for example, according to frequency.
The ability to make an automated search for Pi2s with
periods exceeding 100 s would have been particularly
useful to Sutcli�e and Nielsen (1990) in their search for
Pi2 signatures in STARE data. Because of the limited
20-s time resolution of STARE data, Sutcli�e and
Nielsen (1990) ®rst visually scanned Hermanus induc-
tion magnetometer data for Pi2s with periods exceeding
100-s. This was a time-consuming process which could
have been speeded up signi®cantly using the ANN
pattern recognition method.

6 Conclusion

We have used the pattern recognition capabilities of
arti®cial neural networks to develop a technique to
identify Pi2 pulsations by the automated scanning of
digital magnetometer data. Since low-latitude Pi2 pul-
sations are among the clearest indicators of magneto-
spheric substorm onsets and enhancements, the proce-
dure is ideally suited to substorm onset and
enhancement identi®cation. We have shown the proce-
dure to be extremely reliable and pointed out a number

Fig. 8. Histogram showing the di�erences in onset times of Pi2
signatures determined visually and by the ANN; the signs are in the
sense of visual minus ANN timing. The cross hatched and plain
regions represent the di�erences for data sets 1 and 2, respectively
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of applications. In future work we plan to train ANNs
to identify Pi2 pulsations with speci®c parameters and
then to evaluate this as a procedure for the character-
isation of substorms.
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